作业帮 > 数学 > 作业

证明恒等式tanA+cotA=2/sin2A

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 08:01:53
证明恒等式tanA+cotA=2/sin2A
怎么证明?
证明恒等式tanA+cotA=2/sin2A
tanA+cotA
=(sinA/cosA)+(cosA/sinA)
通分得
=[(sinA)^2+(cosA)^2]/sinAcosA
因为(sinA)^2+(cosA)^2=1(这个应该知道吧..)
所以=1/sinAcosA
又因为sin2A=2*sinA*cosA(就是二倍角公式..)
所以原式=1/(sin2A/2)
=2/sin2A
希望我的能被采纳哦...