D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 21:56:45
D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
求证(1)CD²=CA·CB
(2)CD是圆O的切线
(3)过点B做圆O的切线交CD的延长线于点E,若BC=12,tan∠CDA=2/3,求BE的长
求证(1)CD²=CA·CB
(2)CD是圆O的切线
(3)过点B做圆O的切线交CD的延长线于点E,若BC=12,tan∠CDA=2/3,求BE的长
连结OD,
∵OB=OD,
∴则△OBD是等腰△,
∴〈OBD=〈ODB,
∵〈CBD=〈ADC,(已知),
∴〈CDA+〈BDO,
∵AB是直径,
∴〈BDA=90°,(半圆上的圆周角是直角),
∴〈BDO+〈ODA=90°,
∴〈DAC+〈ODA=90°,
∴〈ODC=90°,
∴OD⊥CD,
∴CD是⊙O的切线.
2、∵BE是⊙O的切线,BA是直径,
∴〈EBC=90°,
作DH⊥BC,垂足H,
则〈ADH=〈DBA,
∴〈ADH=〈CDA,
〈CDH=2〈ADC,
利用正切的倍角公式,
tan
再问: 能说说第一问吗?
∵OB=OD,
∴则△OBD是等腰△,
∴〈OBD=〈ODB,
∵〈CBD=〈ADC,(已知),
∴〈CDA+〈BDO,
∵AB是直径,
∴〈BDA=90°,(半圆上的圆周角是直角),
∴〈BDO+〈ODA=90°,
∴〈DAC+〈ODA=90°,
∴〈ODC=90°,
∴OD⊥CD,
∴CD是⊙O的切线.
2、∵BE是⊙O的切线,BA是直径,
∴〈EBC=90°,
作DH⊥BC,垂足H,
则〈ADH=〈DBA,
∴〈ADH=〈CDA,
〈CDH=2〈ADC,
利用正切的倍角公式,
tan
再问: 能说说第一问吗?
如图,D为圆O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.CD是圆O的切线,DO为半径,过点B作圆O的切线交C
如图,D为圆O上一点,C在直径BA的延长线上,且角 CDA等于 角 CBD.
如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A
关于圆的切线证明题如图,AB是⊙O的直径,C点在圆上,CD⊥AB于D,P在BA延长线上,且∠PCA=∠ACD.求证:PC
△ABC为圆O的内接三角形,D是BA的延长线上一点,已知∠ACD=∠CBD=45
如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°. 1)求证:CD是圆O的切线.
如图,已知CD为圆O的直径,点A为DC延长线上一点,B为圆O上一点,且∠ABC=∠D,求证:(1)AB为圆O的切线
如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°.
如图3,A、B、C 是⊙O上的三点,点 D 是AB延长线上一点,∠AOC = 140°,∠CBD的度数为?
如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O
已知AB是圆O的直径,D是BA延长线上一点,DC切圆O于点C,求证角ACB=90°
如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根