(2011•黔西南州)如图,在Rt△ABC中,∠ACB=90°,点O是BC上一点,以点O圆心,OC为半径的圆交BC于点D
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 13:35:28
(2011•黔西南州)如图,在Rt△ABC中,∠ACB=90°,点O是BC上一点,以点O圆心,OC为半径的圆交BC于点D,恰好与AB相切于点E.
(1)求证:AO是∠BAC的平分线;
(2)若BD=1cm,BE=3cm,求sinB及AC的长.
(1)求证:AO是∠BAC的平分线;
(2)若BD=1cm,BE=3cm,求sinB及AC的长.
(1)∵∠OCA=90°,OC为圆O的半径,
∴AC为圆O的切线,又AB与圆O相切,E为切点,
∴AE=AC,AO平分∠BAC;
(2)∵BE为圆O的切线,BC为圆O的割线,
∴BE2=BD•BC=BD(BD+DC),又BD=1cm,BE=3cm,
∴32=1+DC,即DC=8cm,
∴OE=OD=4cm,
连接OE,由BE为圆O的切线,得到OE⊥EB,
在直角三角形BEO中,OE=4cm,OB=BD+OD=1+4=5cm,
∴sinB=
OE
OB=
4
5,BE=
OB2−OE2=3cm,
在直角三角形ABC中,设AE=AC=xcm,则AB=AE+EB=(x+3)cm,
BC=BD+DC=9cm,
根据勾股定理得:AB2=AC2+BC2,即(x+3)2=x2+92,
解得:x=12,
则AC=12cm.
∴AC为圆O的切线,又AB与圆O相切,E为切点,
∴AE=AC,AO平分∠BAC;
(2)∵BE为圆O的切线,BC为圆O的割线,
∴BE2=BD•BC=BD(BD+DC),又BD=1cm,BE=3cm,
∴32=1+DC,即DC=8cm,
∴OE=OD=4cm,
连接OE,由BE为圆O的切线,得到OE⊥EB,
在直角三角形BEO中,OE=4cm,OB=BD+OD=1+4=5cm,
∴sinB=
OE
OB=
4
5,BE=
OB2−OE2=3cm,
在直角三角形ABC中,设AE=AC=xcm,则AB=AE+EB=(x+3)cm,
BC=BD+DC=9cm,
根据勾股定理得:AB2=AC2+BC2,即(x+3)2=x2+92,
解得:x=12,
则AC=12cm.
如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于
如图,在RT△ABC中,角ACB=90°,O是AB上一点,以OA为半径的圆O切BC于点D,交AC于点E,且AD=BD,连
【急!在rt△ABC中,∠ACB=90°点O是AB上一点,以OA为半径的⊙O切BC于D,交AC于点E,且AD=B
(2011•漳州质检)如图,已知Rt△ABC,∠ACB=90°,点O为斜边AB上一点,以点O为圆心、OA为半径的圆与BC
(2011•盐城)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、
(2013•新余模拟)如图,在Rt△ABC中,∠C为直角,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D
如图,在Rt△ABC中,∠ABC=90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD
如图,Rt△ABC中,∠C=90°,以AB上点O为圆心,BO为半径的圆交AB的中点于E,交BC于D,且与AC切于点P
如图,在Rt△ABC中,∠C=90°,O是斜边AB上一点.以O为圆心,OB为半径的圆与BC交于点F,与AB交于点D,与A
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.