奇次多项式F(x)=a0*x^(2n+1)+a1*x^(2n)+……+a2n*x+a2n+1至少有一实根,已知a0不等于
在恒等式(1+X)^n=a0+a1X+a2X^2+……+anX^n(n为偶数)中,a0+a1+a2+……+an=?
已知(x+1)^n=a0+a1(x-1)+a2(x-1)^2+...+an(x-1)^n,其中n≥2,n∈N*.设bn=
设1+(1+x)+(1+x)^2+……+(1+x)^n=a0+a1*x+a2*x^2+……an*x^n,lim[(na1
a0+0.5a1+.+an/(n+1)=0,证明f(x)=a0+a1x+..+anx^n在(0,1)内至少有1个零根
已知f=2x-1,g=-2x,数列{an}(n∈正整数)的各项都为整数,其前n项和为sn,若点(a2n-1,a2n)【2
(理) 已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,则自然数n
(a0)+(a1)/2+.+(an)/n+1=0证明f(x)=a0+a1x+.+anx的n次方在开去间0,1内至少有一个
设1+(1+x)+(1+x)^2+……+(1+x)^n=a0+a1*x+a2*x2+……an*xn,lim[(na1)/
已知(2x-1)3=a3x3+a2x2+a1x+a0,求a3+a2+a1+a0和_a3+a2_a1+a0
若(2x+1)的5次方=a0 +a1 x+a2x2次+a3x3次+a4x4次+a5x5次,试求(1)a0+a1+a2+a
二项式定理习题已知(x^2-1/x)^n的展开式中含x的项为第六项,设(1-x+2x^2)^n=a0+a1 x+a2 x
已知(2x-1)³=a3x³+a2x²+a1x+a0,求a3+a2+a1+a0的值.