β与α是等价无穷小的充要条件是:β=α+0(α),其中0(α)应该怎么理解?请举例说明,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 17:05:56
β与α是等价无穷小的充要条件是:β=α+0(α),其中0(α)应该怎么理解?请举例说明,
x和sinx是等价无穷小 ,那么能用β=α+0(α)的形式表示一下吗?
"后面的0(x)叫做佩亚诺型余项,"我们没有学过(只说是x的高阶),那编者把他放在这里要我们怎么理解他呢?(孙兄的没看懂),那β=α+0(α)的形式“解释”一下x和sinx是等价无穷小总行吧?
我是不是可以这么理解:3x∧2=sinx+x,在中学阶段显然是错误的,但现在看在x趋向于零时这个等式是成立的
x和sinx是等价无穷小 ,那么能用β=α+0(α)的形式表示一下吗?
"后面的0(x)叫做佩亚诺型余项,"我们没有学过(只说是x的高阶),那编者把他放在这里要我们怎么理解他呢?(孙兄的没看懂),那β=α+0(α)的形式“解释”一下x和sinx是等价无穷小总行吧?
我是不是可以这么理解:3x∧2=sinx+x,在中学阶段显然是错误的,但现在看在x趋向于零时这个等式是成立的
0(α)表示是α的高阶无穷小.不唯一.你既然知道无穷小的阶,想必你也学习了高等数学.那么0(α)你应该认识的呀!
等价无穷小,就是说比值的极限等于一
x和sinx是等价无穷小 一般写成sinx=x+0(x)
至于0(x)不用特意写出来,我不知道你是否是大一新生还是什么,你一定要转换你的思维,高等数学中增加了更多的变量,不是什么都要写出的.
实际上sinx=x+0(x)这个公式是微分的近似计算的简化,更是sinx的幂级数展开式(马克劳林)简化,后面的0(x)叫做佩亚诺型余项,代替了很多.
sinx的幂级数展开式为x-x^3/3!+x^5/5!-x^7/7!+...
首先你得明白什么叫做等价无穷小.就是两个同一变化过程中的无穷小作商,再在他们的变化过程中求极限,如果商的极限值等于1,那么就叫做等价无穷小.我们往往用趋于0的速度的快慢来区分无穷小的阶,所以,你也可以简单的理解为在0的附近他们趋于0的速度一样.所以我们后面有了求极限的一种灵活的方法就是等价无穷小作代换.
明白了定义,你就用定义验证就行了.关键是这里写数学公式很困难,否则我就给你证明.很多数学符号这里都没有办法表示.
我是不是可以这么理解:3x∧2=sinx+x,在中学阶段显然是错误的,但现在看在x趋向于零时这个等式是成立的
你的理解不对,那个高阶无穷小,实际上表示的就是β与α的差,正是因为不能写出具体是多少,所以才用高阶无穷小作了一个代替,如果你非得写出来,那么对于不同的β与α,结果也是不同的,而且有些是不能求出的.比如你说的sinx和x,那个x的高阶无穷小就应该是sinx的幂级数展开式的第二项后面的所有项,即-x^3/3!+x^5/5!-x^7/7!+...
建议你看一下高等数学的无穷级数那一章,一般是下册书的最后一章
等价无穷小,就是说比值的极限等于一
x和sinx是等价无穷小 一般写成sinx=x+0(x)
至于0(x)不用特意写出来,我不知道你是否是大一新生还是什么,你一定要转换你的思维,高等数学中增加了更多的变量,不是什么都要写出的.
实际上sinx=x+0(x)这个公式是微分的近似计算的简化,更是sinx的幂级数展开式(马克劳林)简化,后面的0(x)叫做佩亚诺型余项,代替了很多.
sinx的幂级数展开式为x-x^3/3!+x^5/5!-x^7/7!+...
首先你得明白什么叫做等价无穷小.就是两个同一变化过程中的无穷小作商,再在他们的变化过程中求极限,如果商的极限值等于1,那么就叫做等价无穷小.我们往往用趋于0的速度的快慢来区分无穷小的阶,所以,你也可以简单的理解为在0的附近他们趋于0的速度一样.所以我们后面有了求极限的一种灵活的方法就是等价无穷小作代换.
明白了定义,你就用定义验证就行了.关键是这里写数学公式很困难,否则我就给你证明.很多数学符号这里都没有办法表示.
我是不是可以这么理解:3x∧2=sinx+x,在中学阶段显然是错误的,但现在看在x趋向于零时这个等式是成立的
你的理解不对,那个高阶无穷小,实际上表示的就是β与α的差,正是因为不能写出具体是多少,所以才用高阶无穷小作了一个代替,如果你非得写出来,那么对于不同的β与α,结果也是不同的,而且有些是不能求出的.比如你说的sinx和x,那个x的高阶无穷小就应该是sinx的幂级数展开式的第二项后面的所有项,即-x^3/3!+x^5/5!-x^7/7!+...
建议你看一下高等数学的无穷级数那一章,一般是下册书的最后一章
等价无穷小的替换u趋近于0,ln(1+u)与u是等价无穷小
等价无穷小 极限怎么证明e^x-1与x是等价无穷小?也就是证明当x→0时,(e^x-1)/x的极限为1,但怎么证明?
若当x趋向于0时,α(x)=kx^2与β(x)=(1+x*arcsinx)^1/2-(cosx)^1/2是等价无穷小,求
等价无穷小的证明当x趋近于0时,证明arctanx与x对无穷小是等价的
x趋于0时候,tanx和x为什么是等价无穷小呢?怎么形象理解?
等价无穷小的问题当x趋近于0,a为非零常数.(1+x)^a减1 与ax 等价无穷小.这个怎么理解啊
证明无穷小的等价关系具有下列性质: 若α~β,β~γ,则α~γ(传递性)
.当x趋向0时,与sinx是等价无穷小的是_______.(求详解)
求x趋近与0的极限时,x和sin4x是等价无穷小吗?
x趋于0时,根号x与根号x的正弦是等价无穷小吗?
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价
等价无穷小,当x趋近于0时,ln(1+x)~x是怎么证明的