(2+1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)=?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 12:52:46
(2+1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)=?
(2+1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2-1)(2+1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^2-1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^4-1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^8-1)(2^8+1) (2^16+1) (2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
=(2-1)(2+1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^2-1)(2^2+1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^4-1)(2^4+1) (2^8+1) (2^16+1) (2^32+1)
=(2^8-1)(2^8+1) (2^16+1) (2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1=
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1计算方法是什么?
1/2+1/4+1/8+1/16+1/32+.
已知m=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)(2^128
设M=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),试确定M-2
设M=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)(2^128+
计算(1+2)(1+2^2;)(1+2^4)(1+2^8)(1+2^16)(1+2^32)
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),
128+64+32+16+8+4+2+1+2/1+4/1+8/1+16/1+32/1=?
若A=(2+1)(2^2+1)(2^4+1)( 2^8+1)( 2^16+1)( 2^32+1)( 2^64+1) 求A
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)=?
计算3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1的值