作业帮 > 数学 > 作业

证明两个增函数的和为增函数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 03:17:48
证明两个增函数的和为增函数
证明两个增函数的和为增函数
用定义法即可.
令h(x)=f(x) + g(x),其中f(x),g(x) 都为增函数.
令X2>X1,那么 h(x2) - h(x1) = f(x2) + g(x2) - [f(x1) + g(x)]
=[f(x2) - f(x1)]+[g(x2) - g(x1)]
因为f(x),g(x) 都为增函数,所以
f(x2) - f(x1)> 0 ,g(x2) - g(x1)> 0
因此 h(x2) - h(x1)> 0
所以命题得证 .