已知函数y=f(x)的图象过点(-2,-3),且满足f(x-2)=ax2-(a-3)x+(a-2),设g(x)=f[f(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:51:00
已知函数y=f(x)的图象过点(-2,-3),且满足f(x-2)=ax2-(a-3)x+(a-2),设g(x)=f[f(x)],F(x)=pg(x)-4f(x)
(I)求f(x)的表达式;
(Ⅱ)是否存在正实数p,使F(x)在(-∞,f(2))上是增函数,在(f(2),0)上是减函数?若存在,求出p;若不存在,请说明理由.
(I)求f(x)的表达式;
(Ⅱ)是否存在正实数p,使F(x)在(-∞,f(2))上是增函数,在(f(2),0)上是减函数?若存在,求出p;若不存在,请说明理由.
(I)令x-2=t,则x=2+t∴f(t)=a(2+t)2-(a-3)(2+t)+(a-2)∵f(-2)=-3∴a-2=-3,∴a=-1(13分)
∴f(t)=-(2+t)2+4(2+t)-3=-t2+1,即f(x)=-x2+1(15分)
(II)g(x)=f[f(x)]=f(-x2+1)=-(-x2+1)2+1=-x4+2x2F(x)=pg(x)-4f(x)=p(-x4+2x2)-4(-x2+1)=-px4+(2p+4)x2-4Fn(x)=-4px3+4(p+2)x=-4x(px2-p-2)
∵f(2)=-3,假设存在正实数p,使F(x)在(-∞,-3)上是增函数,在(-3,0)上是减函数∴Fn(-3)=0,解得p=
1
4(10分)
当p=
1
4时,Fn(x)=-x3+9x=x(3-x)(3+x)
当x<-3时,Fn(x)>0∴F(x)在(-∞,-3)上是增函数
当-3<x<0时,Fn(x)<0∴F(x)在(-3,0)上是减函数
∴存在正实数p=
1
4,使得F(x)在(-∞,-3)上是增函数,在(-3,0)上是减函数(14分)
∴f(t)=-(2+t)2+4(2+t)-3=-t2+1,即f(x)=-x2+1(15分)
(II)g(x)=f[f(x)]=f(-x2+1)=-(-x2+1)2+1=-x4+2x2F(x)=pg(x)-4f(x)=p(-x4+2x2)-4(-x2+1)=-px4+(2p+4)x2-4Fn(x)=-4px3+4(p+2)x=-4x(px2-p-2)
∵f(2)=-3,假设存在正实数p,使F(x)在(-∞,-3)上是增函数,在(-3,0)上是减函数∴Fn(-3)=0,解得p=
1
4(10分)
当p=
1
4时,Fn(x)=-x3+9x=x(3-x)(3+x)
当x<-3时,Fn(x)>0∴F(x)在(-∞,-3)上是增函数
当-3<x<0时,Fn(x)<0∴F(x)在(-3,0)上是减函数
∴存在正实数p=
1
4,使得F(x)在(-∞,-3)上是增函数,在(-3,0)上是减函数(14分)
已知二次函数f(x)=ax2+2x+c(a≠0)的图象与y轴交于点(0,1),且满足f(-2+x)=f(-2-x)(x∈
设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析
设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有
已知函数f(x)=a^x+b的图像过点(1,3),且它的反函数f-1(x)图象过点(2,0)点,求f(x)解析式
已知函数f(x)=a的x次方-10/3乘以a的反函数的图象过点(-1,2),且f(x)为减函数,求f(x)的解析式.
1.设二次函数f(x)满足f(x+3)=f(1-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)
已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)图象上点P(1,f(1))的切线方程为y=3x+1,且函数y
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=
若函数f(x)=ax2+2x+a+3,满足f(1+x)=f(1-x),则a的值为______.
设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,图像过点(0,3)求f(x)的解析式
设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的实根平方和为10,图像过点(0,3),求f(x)的解析式
设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的两实数根平方和为10,图像过点(0,3),求f(x)的解