已知:如图,在菱形ABCD中,点F为BC的中点,DF与对角线AC交与点M,过点M作ME⊥CD于点E,∠1=∠2.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:52:19
已知:如图,在菱形ABCD中,点F为BC的中点,DF与对角线AC交与点M,过点M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1求BC的长
(2)求证:AM=DF+ME
(1)若CE=1求BC的长
(2)求证:AM=DF+ME
⑴∵ABCD是菱形,∴AB∥CD,
∴∠MCD=∠1,
∵∠1=∠2,∴∠MCD=∠2,
∴MC=MD,
∵ME⊥CD,
∴CE=DE=1/2CD=1/2BC,
∴BC=2CE=2.
⑵证明:连接BD交AC于O,∵ABCD是菱形,
∴BD⊥AC,AO=CO,
∵AB=BC,∴∠BCD=∠1,
∴∠MCE=∠MCF,
∵CE=CF=1/2BC,CM=CM,
∴ΔMCE≌ΔMCF,
∴∠CFM=∠CEM=90°,
∴DF垂直平分BC,∴BD=CD=BC,
∴ΔDBC是等边三角形,
∴CO=BF(等边三角形的高相等),
∴AO=BF,
又 ∠2=∠MDO=30°,
∴ME=MO,
∴AM=AO+MO=DF+ME.
∴∠MCD=∠1,
∵∠1=∠2,∴∠MCD=∠2,
∴MC=MD,
∵ME⊥CD,
∴CE=DE=1/2CD=1/2BC,
∴BC=2CE=2.
⑵证明:连接BD交AC于O,∵ABCD是菱形,
∴BD⊥AC,AO=CO,
∵AB=BC,∴∠BCD=∠1,
∴∠MCE=∠MCF,
∵CE=CF=1/2BC,CM=CM,
∴ΔMCE≌ΔMCF,
∴∠CFM=∠CEM=90°,
∴DF垂直平分BC,∴BD=CD=BC,
∴ΔDBC是等边三角形,
∴CO=BF(等边三角形的高相等),
∴AO=BF,
又 ∠2=∠MDO=30°,
∴ME=MO,
∴AM=AO+MO=DF+ME.
已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2
已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME垂直CD于点E,角1=角2.
已知,如图,在菱形ABCD中,F边为BC的中点,DF与对角线ACM,过M作ME⊥CD于点E,
已知如图四边形abcd是菱形,过AB的中点E作EF垂直AC与点M,交AD于点F求证:AF=DF
已知:如图,在菱形ABCD中,过AB的中点E作EF⊥AC,交AD于点M,交CD的延长线于点F.
已知如图四边形abcd是菱形过ab的中点e作ef⊥ac于点m 交ad于点f 求证af=df
已知如图四边形ABCD是菱形,过AB的中点E作EF垂直AC于点M,交AD于点F求证:AF=DF
如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作 ME平行CD交BC于点E,作MF平行BC于点F.求证AM=
如图在正方形abcd中,点m是对角线bd上的一点,过点m作me垂直cd交bc于点e,作mf平行bc交cd于点f,求证am
如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且O
如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD 于点M,交CD的延长线与点F .(1)求证:AM=D