作业帮 > 数学 > 作业

设函数f(x)=6cos^2x-2√3sinxcosx(1)求f(x)的最大值及最小正周期

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 19:11:01
设函数f(x)=6cos^2x-2√3sinxcosx(1)求f(x)的最大值及最小正周期
若锐角α满足f(α)=3-2√3,求tan4/5的值
设函数f(x)=6cos^2x-2√3sinxcosx(1)求f(x)的最大值及最小正周期
f(x)=6(cosx)^2-2√3sinxcosx
=6*(cos2x+1)/2-√3sin2x
=3cos2x-√3sin2x+3
=2√3(√3/2cos2x-1/2sin2x)+3
=2√3sin(π/3-2x)+3
=-2√3sin(2x-π/3)+3
所以f(x)的最大值是2√3+3,最小正周期是π.
若锐角α满足f(α)=3-2√3,即f(α)=3-2√3sin(2α-π/3)=3-2√3,所以sin(2α-π/3)=1,
因此2α-π/3=π/2+2kπ,即α=5π/12+kπ,k∈z
由于α是锐角,所以α=5π/12,tan4α/5=tanπ/3=√3.