高数求微分谢了∫(t-sint)^2sintdt
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 13:18:30
高数求微分
谢了∫(t-sint)^2sintdt
谢了∫(t-sint)^2sintdt
∫(t-sint)^2sintdt
=∫(t^2sint+sint^2sint-2tsint^2)dt
=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt
=-∫t^2dcost-∫(1-cost^2)dcost-∫t*(1-cos2t)dt
=-t^2cost+∫2costdt-cost+cost^3/3-t^2/2+∫tdsin2t
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-∫sin2tdt
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-1/2*sin2t^2
=∫(t^2sint+sint^2sint-2tsint^2)dt
=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt
=-∫t^2dcost-∫(1-cost^2)dcost-∫t*(1-cos2t)dt
=-t^2cost+∫2costdt-cost+cost^3/3-t^2/2+∫tdsin2t
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-∫sin2tdt
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-1/2*sin2t^2
高数题求积分∫(t-sint)^2sintdt
求微分的题目一道,x=e^(-t)sint,y=e^tcost,求 d^2y/dx^2
设f(x)=∫(1,x^2)sintdt/t,求∫(0,1)xf(x)dx
a∫1/sint*dt-a∫sint*dt =a*ln|tan(t/2)|+a*cost+C
求一积分题解题步骤∫(dt/√1-t^2)令t=cosx,dt=-sintdt=∫(-sinxdx/sinx)=-∫dx
∫(e^t)[(sint)^3]dx
f(x)=∫(x^2,1)sint/t dt,求∫(1,0)xf(x)dx
设f(x)=∫((pi,x) sintdt/t,求∫(0,pi) f(x)dx
设f(x)为连续可导函数,f(x)恒不等于0、如果[f(x)]^2=∫(0-x) f(t)sintdt/(2+cost)
高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)
∫cost/(sint^2) dt =∫dsint/sint^2 =-1/sint + C
∫sint/(cost+sint)dt