求以椭圆x^2/25+y^2/9=1的长轴端点作焦点,并且与直线l:3(根号2)x-4y-12=0相切的双曲线的方程.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:16:39
求以椭圆x^2/25+y^2/9=1的长轴端点作焦点,并且与直线l:3(根号2)x-4y-12=0相切的双曲线的方程.
椭圆x^2/25+y^2/9=1的长轴端点(5,0),(-5,0)
双曲线的方程:x^2/a^2 - y^2/b^2=1
焦点:(-(a^2+b^2)^(1/2),0) ( (a^2+b^2)^(1/2),0)) ==>
(a^2+b^2)^(1/2)=5
与直线l:3(根号2)x-4y-12=0 相切
x=(4y+12)/ 3(根号2)
(4y+12)^2/(a^2*9*2)-y^2/(a^2-25) =0
直线l:dy/dx=3(2)^(1/2)/4
2x/a^2-2y dy/dx /(a^2-25) =1
可以解a,
b^2=25-a^2
双曲线的方程:x^2/a^2 - y^2/b^2=1
焦点:(-(a^2+b^2)^(1/2),0) ( (a^2+b^2)^(1/2),0)) ==>
(a^2+b^2)^(1/2)=5
与直线l:3(根号2)x-4y-12=0 相切
x=(4y+12)/ 3(根号2)
(4y+12)^2/(a^2*9*2)-y^2/(a^2-25) =0
直线l:dy/dx=3(2)^(1/2)/4
2x/a^2-2y dy/dx /(a^2-25) =1
可以解a,
b^2=25-a^2
求以椭圆X2/25+Y2/9=1的长轴端点为焦点,并且经过点(4根号2,3)的双曲线的标准方程
已知双曲线的渐近线方程为3x±4y=0 ,它的焦点是椭圆x^2/10+y^2/5=1的长轴端点,求此双曲线的方程
求以过原点与圆x^2+y^2-4x+3=0相切的两直线为渐近线,且过椭圆y^2+4x^2=4两焦点双曲线的方程
直线l:y=x+2与以原点为圆心,以双曲线C的虚半长轴为半径的圆相切,求双曲线方程(离心率为根号三,焦点在x轴)
1.求以椭圆X方/8+Y方/5=1焦点与长轴的端点分别为顶点与焦点的双曲线方程.
求以椭圆x^2/16+y^2/4=1的长轴顶点为焦点,且a=2根号3的双曲线方程
已知椭圆方程为x^2/4+y^2/3=1,求以椭圆的焦点为焦点,离心率为根号2的双曲线方程
已知双曲线C与椭圆x^2/8+y^2/4=1有相同的焦点,直线y=根号3x为双曲线C的一条渐近线①求双曲线C的方程
求以椭圆3x^2+12y^2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程
求通过椭圆X^2/3+Y^2/4=1的一个焦点,并且与Y轴垂直的直线被椭圆截得的弦长
求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程
已知两个椭圆的两个焦点F1(-1,0),F2(1,0),且椭圆与直线y=x-根号3相切,求椭圆的方程