关于一致连续性对于f(x)=x^2在R上不一致连续,问在某一区间是否一致连续,比如(1,+无穷),(0,1)之类的,求证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:20:34
关于一致连续性
对于f(x)=x^2在R上不一致连续,问在某一区间是否一致连续,比如(1,+无穷),(0,1)之类的,求证明,其实问这问题是看不明白一致连续到底是怎么回事,或许这个问题可以加深我的理解,
对于f(x)=x^2在R上不一致连续,问在某一区间是否一致连续,比如(1,+无穷),(0,1)之类的,求证明,其实问这问题是看不明白一致连续到底是怎么回事,或许这个问题可以加深我的理解,
首先闭区间上的连续函数必一致连续,而对于开区间,有这样的定理,有限开区间(a,b)上的连续函数一致连续的充要条件是两个单侧极限f(a+)和f(b-)都存在.对于无穷区间也有相应的定理,[a,+无穷)上连续的函数如果存在有限极限f(+无穷)=A,则在这区间上一致连续.由这两个定理很容易看出你的两个例子中,f(x)=x^2在(1,+无穷)不一致连续,在(0,1)上一致连续.
函数连续性和一致连续性有什么区别?为什么函数f(x)在闭区间上连续,就在该区间上一致连续?
证明:函数f(x)=sin(x)/x在(0,1)上是一致连续的
证明sin(1/x)在(0,1)上不一致连续,但在(a,1)上一致连续
证明sin(1/x)在[1,正无穷)上一致连续
数学分析连续性证明证明:已知函数f(x)在[a,正无穷)上一致连续,且当x→正无穷时 f(x)极限为c,如果已知f(a)
若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.
F(x)在[a,+∞)上连续,且在正无穷极限存在,证明:F(x)在[a,+∞)上一致连续.
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
证明 若f(x)在有限区间内一致连续,则可补充f(a)和f(b),使得f(x)在[a,b]上连续
证明:sin(1/x)在(0,1)上不连续,但在(a,1)(a大于0)上一致连续
f(x)=x 在闭区间(1,2)上连续的定积分
f(z)=1/(1-z)在单位圆是否一致连续