作业帮 > 数学 > 作业

已知abcd都是实数,且a²+b²=r²,c²+d²=R²,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 16:11:13
已知abcd都是实数,且a²+b²=r²,c²+d²=R²,(r,R均大于0)求证:|ac+bd|≤
已知abcd都是实数,且a2+b2=r2,c2+d2=R2,(r,R均大于0)求证:
|ac+bd|≤(r2+R2)/2
已知abcd都是实数,且a²+b²=r²,c²+d²=R²,
证法一(综合法):
∵a、b、c、d都是实数,
∴|ac+bd|≤|ac|+|bd|≤(a^2+c^2)/2+(b^2+d^2)/2=(a^2+c^2+b^2+d^2)/2
∵a^2+b^2=r^2,c^2+d^2=R^2,
∴|ac+bd|≤(r^2+R^2)/2 .
证法二(比较法):
显然|ac+bd|≤(r^2+R^2)/2
-(r^2+R^2)/2≤ac+bd≤ (r^2+R^2)/2
先证ac+bd≤ (r^2+R^2)/2.
ac+bd- (r^2+R^2)/2
=ac+bd-(a^2+c^2+b^2+d^2)/2)
=-〔(a-c)^2+(b-d)^2〕/2≤0
∴ac+bd≤ (r2+R2)/2.
再证ac+bd≥- (r^2+R^2)/2.
ac+bd+ (r^2+R^2)/2
=ac+bd+ (a^2+b^2+c^2+d^2)/2
= [(a+c)^2+(b+d)^2]/2≥0,
∴ac+bd≥-(r^2+R^2)/2
综上述|ac+bd|≤(r^2+R^2)/2