作业帮 > 数学 > 作业

已知函数f(x)是定义在区间(-2,2)上的偶函数,且在(0,2)上单调递增,f(1-a)<f(1+a)求实数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 08:00:17
已知函数f(x)是定义在区间(-2,2)上的偶函数,且在(0,2)上单调递增,f(1-a)<f(1+a)求实数
已知函数f(x)是定义在区间(-2,2)上的偶函数,且在(0,2)上单调递增,f(1-a)
已知函数f(x)是定义在区间(-2,2)上的偶函数,且在(0,2)上单调递增,f(1-a)<f(1+a)求实数
因为f(x)是定义在区间(-2,2)上的偶函数所以当-2<x<2时,f(-x)=f(x)因为在(0,2)上单调递增所以在(-2,0)上单调递减因为f(1-a)<f(1+a)所以满足-2<1-a<2 (解得-1<a<3) -2<1+a<2 (解得-3<a<1) (1-a)的绝对值 < (1+a)的绝对值 解方程(1-a)的绝对值 < (1+a)的绝对值 的详细过程如下:1° 当a≤-1时,1-a>0,1+a≤0所以1-a<-(1+a)此情况无解2° 当-1<a≤1时,1-a≥0,1+a>0所以1-a<1+a所以a>0,即0<a≤13° 当a>1时,1-a<0,1+a>0所以-(1-a)<1+a此情况无解所以方程(1-a)的绝对值 < (1+a)的绝对值 的解集为 {x|0<a≤1}所以a的取值范围为0<a<1