作业帮 > 数学 > 作业

若数列an满足an=4n-1 又有数列bn满足bk=1/k(a1+a2+……+ak)求数列{bn}得前n项和Sn

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 05:05:10
若数列an满足an=4n-1 又有数列bn满足bk=1/k(a1+a2+……+ak)求数列{bn}得前n项和Sn
若数列an满足an=4n-1 又有数列bn满足bk=1/k(a1+a2+……+ak)求数列{bn}得前n项和Sn
你的题目未抄录清楚.
当a1+a2+……+ak在分母中时解答如下:
因为an=4n-1,所以{an}是等差数列,所以a1+a2+……+ak=2k^2+k=k(2k+1)
所以bk=1/[k(a1+a2+……+ak)]=1/[k^2(2k+1)]
=(-2/k)+(1/k^2)+4/(2k+1)
可以证明bk的前n项和非初等函数.无法表达
当a1+a2+……+ak在分子中时解答如下:
因为an=4n-1,所以{an}是等差数列,所以a1+a2+……+ak=2k^2+k=k(2k+1)
所以bk=(1/k)*(a1+a2+……+ak)=2k+1(等差数列),所以bk的前n项和为n^2+2.