已知椭圆x²/16+y²/4=1的焦点为F1,F2,抛物线y2=2px(p>0)与椭圆在第一象限的交
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:49:44
已知椭圆x²/16+y²/4=1的焦点为F1,F2,抛物线y2=2px(p>0)与椭圆在第一象限的交点为Q,
若∠F1QF2=60°.
(1)求△F1QF2的面积.
(2)求此抛物线的方程.
若∠F1QF2=60°.
(1)求△F1QF2的面积.
(2)求此抛物线的方程.
椭圆x²/16+y²/4=1
(1)Q在椭圆上,|QF1|+|QF2|=8
|QF1|^2+2|QF1|*|QF2|+|QF2|^2=64.(1)
在△QF1F2中,∠F1QF2=60
|QF1|^2|+|QF2|^2-2|QF1|*|QF2|cos60°==|F1F2|^2=48.(2)
.(1)-.(2)
|QF1||QF2|=16/3
S△F1QF2的面积=1/2|QF1||QF2| *sin60=1/2*16/3/*√32=4/3*√3
设Q(x0,),(x0>0,y0>0)
由(1)知S△F1QF2=1/2|QF1||QF2|*y0=4/3*√3
|F1F2|=2c=2*√(16-4)=4√3
y0=2/3,Q点在椭圆上
x0²/16+(2/3)²/4=1
x0=8/3*√3
Q(8/3*√3,2/3),又Q点在抛物线上
(2/3)^2=2p8/3*√3
p=√3/36
抛物线的方程:y2=√3/18x
(1)Q在椭圆上,|QF1|+|QF2|=8
|QF1|^2+2|QF1|*|QF2|+|QF2|^2=64.(1)
在△QF1F2中,∠F1QF2=60
|QF1|^2|+|QF2|^2-2|QF1|*|QF2|cos60°==|F1F2|^2=48.(2)
.(1)-.(2)
|QF1||QF2|=16/3
S△F1QF2的面积=1/2|QF1||QF2| *sin60=1/2*16/3/*√32=4/3*√3
设Q(x0,),(x0>0,y0>0)
由(1)知S△F1QF2=1/2|QF1||QF2|*y0=4/3*√3
|F1F2|=2c=2*√(16-4)=4√3
y0=2/3,Q点在椭圆上
x0²/16+(2/3)²/4=1
x0=8/3*√3
Q(8/3*√3,2/3),又Q点在抛物线上
(2/3)^2=2p8/3*√3
p=√3/36
抛物线的方程:y2=√3/18x
已知椭圆x2/4+y2/3=1,F1,F2为椭圆的焦点,若p在第二象限
已知点p(x,y)在椭圆x2|2+y2|1=1的左右焦点分别为f1 f2 若过点p(0,-2)及f1的直线交椭圆与A B
已知抛物线C1:y^2=4px(p>0),焦点为F2,其准线与x轴交于点F1,椭圆C2分别以F1,F2为左右焦点,其离心
已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2,椭圆的另一个焦点为F1,点P为抛物线与椭圆
已知椭圆(x^2)/2+(y^2)/4=1两焦点分别为F1、F2,P是椭圆在第一象限的图像上的一点,并满足向量PF1·P
高中数学题:已知椭圆x²+y²/2=1的两个焦点是F1,F2,点P在椭圆上,且PF1垂直F1,则|P
已知椭圆x平方/2+y平方/4=1两焦点分别为F1,F2,P是椭圆的第一象限弧上一点,并满足向量PF1乘以向量PF2=1
已知椭圆E:x^2/2+y^2/4=1的左、右焦点分别是F1,F2,点P为椭圆E第一象限上一点,且满足向量(PF1)点乘
已知椭圆c的中心在坐标原点,对称轴为坐标轴,左右焦点分别为F1,F2且椭圆c的右焦点F2,与抛物线y^2=4√3x的焦点
已知离心率为1/2的椭圆C1的左,右焦点分别为F1,F2,抛物线C2:y2=4mx(m>0)的焦点为F2,设椭圆C1与抛
设抛物线C1:y^2=4mx(m>0)的准线与x轴交于点F1,焦点为F2;椭圆C2以F1、F2为焦点,离心率e=1/2.
已知F1,F2分别是椭圆x^2/25 +y^2/16=1的左右焦点,设P为椭圆上一点,过P、F1两点作直线L1交椭圆另一