判断:设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若向量OP=1/2(向量OA+向量OB),则动点P的轨迹为椭圆
过定圆C上一点A做圆的动弦AB,O为坐标原点.若向量OP=0.5*(向量OA+向量OB),那么动点P的轨迹为椭圆吗?
过定圆C上一定点做圆的弦AB.O为坐标原点,若向量OP=1/2(向量OA+向量OB),则动点P的轨迹方程为?(我们老师讲
关于轨迹的数学题已知A点坐标为〔0,1〕,P点是关于圆O,X平方+Y平方=4上的动点向量OM=1/2〔向量OA+向量OP
已知点A(6,-4),B(1,2)、C(x,y),O为坐标原点,若向量oc=λ向量OA+(1-λ)向量ob,则C的轨迹方
已知点A(6,-4),B(1,2),C(x,y),O为坐标原点,若向量OC=向量OA+M向量OB,求C的轨迹方程
平面向量的计算已知O为坐标原点.向量OP=(x,y),向量OA=(1,1)向量OB=(2,1)若向量OA乘以向量OP小于
已知向量op=(2,1),向量oa=(1,7),向量ob=(5,1),设c是直线op上的一点(o为坐标原点).
设O为坐标原点,P为直线y=1上的动点,向量OP||向量OQ,向量OP点乘向量OQ=1,求Q点的轨迹方程
设O为坐标原点,A,B,C是坐标平面上的3个不同点,向量OA=向量a,向量OB=向量b,向量OC=向量c.求证:若A,B
设P为椭圆x^2/4+y^2=1上的任意一点,O为坐标原点,F为椭圆的左焦点,点M满足向量OM=1/29(向量OP+向量
设O为坐标原点,向量OA=(-4,-3),OB=(12,-5),op=&OA+OB,向量OA.OP的夹角与OP.OB夹角
已知O为平面内一点,A.B.C是平面上不共线的三点,若动点P满足 向量OP=向量OA+m(向量AB+1/2向量BC),(