作业帮 > 数学 > 作业

已知函数f(x)对任意实数p、q都满足:f(p+q)=f(p)×f(q),且f(1)=3分之1,(1)当n属于N*时,求

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:09:13
已知函数f(x)对任意实数p、q都满足:f(p+q)=f(p)×f(q),且f(1)=3分之1,(1)当n属于N*时,求f(n)的表达式,(2)设an=nf(n)(n属于N*),sn是数列{an}的前n项和,求证:sn<3/4
已知函数f(x)对任意实数p、q都满足:f(p+q)=f(p)×f(q),且f(1)=3分之1,(1)当n属于N*时,求
1) f(1)=1/3,
=> f(2)=f(1)×f(1)=(1/3)^2,
=> f(3)=f(1)×f(2)=(1/3)^3,
=> f(4)=f(1)×f(3)=(1/3)^4,
……
=> f(n)=f(1)×f(n-1)=(1/3)^n
2) an=n/3^n,
=> Sn=1/3+2/3^2+3/3^3+4/3^4+……+n/3^n,(1)
=> Sn/3= 1/3^2+2/3^3+3/3^4+……+(n-1)/3^n+n/3^(n+1),(2)
(1)-(2)得,
2Sn/3=1/3+1/3^2+1/3^3+……+1/3^n-n/3^(n+1)
Sn