用构造函数f(x)=(a1^2+a2^2)x^2+2(a1b1+a2b2)x+(b1^2+b2^2)的方法证明不等式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:51:24
用构造函数f(x)=(a1^2+a2^2)x^2+2(a1b1+a2b2)x+(b1^2+b2^2)的方法证明不等式
(a1^2+a2^2)(b1^2+b2^2)≥(a1b1+a2b2)
(a1^2+a2^2)(b1^2+b2^2)≥(a1b1+a2b2)
就是柯西不等式的证明(应该是证明(a1^2+a2^2)(b1^2+b2^2)≥(a1b1+a2b2)^2)
设f(x)=(a1²+a2²)x²+2(a1b1+a2b2)x+(b1²+b2²)
则f(x)=(a1x+b1)²+(a2x+b2)²≥0
所以,△=4(a1b1+a2b2)²-4(a1²+a2²)(b1²+b2²)≤0
即,(a1²+a2²)(b1²+b2²)≥(a1b1+a2b2)²
所以结论得证
设f(x)=(a1²+a2²)x²+2(a1b1+a2b2)x+(b1²+b2²)
则f(x)=(a1x+b1)²+(a2x+b2)²≥0
所以,△=4(a1b1+a2b2)²-4(a1²+a2²)(b1²+b2²)≤0
即,(a1²+a2²)(b1²+b2²)≥(a1b1+a2b2)²
所以结论得证
不等式证明,求证:a1/b1+a2/b2+...+an/bn>=(a1+a2+...+an)^2/a1b1+a2b2+.
已知:如图,A1、A2是抛物线y=1/2x²的两点,A1B1、A2B2分别垂直于x轴,垂足分别为B1、B2,
已知A1 A2 A3是抛物线y=1/2x^2上的3点A1B1,A2B2,A3B3,分别垂直于x轴,垂足为B1 ,B2 ,
请证明不等式:(a1+a2+...+an)^2/(a1*b1+a2*b2+...+an*bn)
已知点P1(a1,b1),P2(a2,b2).Pn(an,bn)都在函数y=log1/2x上
用向量证明不等式:√(a1^2+a2^2+a3^2)*√(b1^2+b2^2+b3^2)≥|a1*b1+a2*b2+a3
已知x,a1,a2,a3,y成等差数列,x,b1,b2,y成等比数列,求(a1+a3)^2/b1×b2 的取值范围
使用排序不等式证明:a1b1+a2b2+……+anbn≥(a1+a2+……+an)(b1+b2……+bn)
由等式x3+a1x2+a2x+a3=(x+1)3+b1(x+1)2+b2(x+1)+b3,定义一个映射:f(a1,a2,
在等差数列an中,首项a1=1,数列bn=(1/2)an,且b1.b2.b3=1/64 求证a1b1+a2b2+...+
已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取
实数x,A1,A2,Y成等比数列,且X,B1,B2,Y成等差数列,则(B1+B2)^2/A1A2的取值范围.