数列 {an}中 a1=8 a4=2 且a(n+2)=2a(n+1) - an n属于N+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 22:01:40
数列 {an}中 a1=8 a4=2 且a(n+2)=2a(n+1) - an n属于N+
1.求数列{an}的通项公式
2.设 Sn=│a1│+│a2│+│a3│+...+│an│ 求Sn
3.设bn = 1/ n(12-an) n属于N+ 数列bn 的前n项和为Tn 是否存在最大的整数m 使得对于任意的n属于N+.均有 Tn大于 m/32成立?若存在.求m的值 ; 若不存在 说明理由.
不好意思.本人的财富用完了.
1.求数列{an}的通项公式
2.设 Sn=│a1│+│a2│+│a3│+...+│an│ 求Sn
3.设bn = 1/ n(12-an) n属于N+ 数列bn 的前n项和为Tn 是否存在最大的整数m 使得对于任意的n属于N+.均有 Tn大于 m/32成立?若存在.求m的值 ; 若不存在 说明理由.
不好意思.本人的财富用完了.
a(n+2)=2a(n+1) - an
a(n+2)-a(n+1)=a(n+1) - an
所以是个等差数列
设等差为d,则
a4=a1+3d
求得d=-2
所以a(n)=a1+(n-1)d=8-2(n-1)=10-2n
Sn=│a1│+│a2│+│a3│+...+│an│
=8+6+4+2+0+2+4+……+2*(n-5)=20+(n-5)(n-4)=n²-9n+40 (n≥5)
bn=1/n*(10-2n)=10/n-2
Tn=10/1-2+10/2-2+10/3-2+……+10/n-2
=10(1/1+1/2+1/3+……+1/n)-2n
a(n+2)-a(n+1)=a(n+1) - an
所以是个等差数列
设等差为d,则
a4=a1+3d
求得d=-2
所以a(n)=a1+(n-1)d=8-2(n-1)=10-2n
Sn=│a1│+│a2│+│a3│+...+│an│
=8+6+4+2+0+2+4+……+2*(n-5)=20+(n-5)(n-4)=n²-9n+40 (n≥5)
bn=1/n*(10-2n)=10/n-2
Tn=10/1-2+10/2-2+10/3-2+……+10/n-2
=10(1/1+1/2+1/3+……+1/n)-2n
数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,(n属于自然数),设Bn=1/n(12-A
在数列{an}中,a1=3,an=-a(n-1)-2n-1(n大等于2,且n属于N正)
若数列{an}中,a1=3,且a(n+1)=an^2(n属于N*) 则数列{an}的通向公式为?
已知数列{An}中a1=1.且A(n+1)=6n*2^n-An.求通项公试An
高一数列通项.数列{an}中 a1=2 ,a4=8且满足 a(n-2)=2a(n-1) - an (n∈N+)求数列{a
在数列{an}中,a1=3,an=-an-1-2n+1(n≥2,且n属于N*) (1)证明:数列{an+n}是等比数列,
已知数列{an}中a1=6,且an-an-1=(an-1/n)+n+1(n属于N*,n≥2),求an
已知数列an中,a1=5,且an=2a(n-1)+2^n-1(n大于等于2,n属于正整数)
已知数列{an}中,a1=3,且满足a(n+1)-3an=2x3^n(n属于N*)
数列证明,求通项公式已知数列{an}中,a1=1/3,an*a(n-1)=a(n-1)-an(n>=2,n属于正整数),
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an
在数列an中,a1=1,且an=(n/(n-1))a(n-1)+2n*3的(n-2)次方 求an通项公式