初二,等腰三角形的性质,中考题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 09:56:02
例五,附加提不会做
解题思路: 见解答
解题过程:
(2)附加题:CN-BM=MN
证明:如图,在CN上截取CM1,使CM1=BM,连接MN,DM1
∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠DBM=∠DCM1=90°.
∵BD=CD,
∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC,DM=DM1
∵∠BDM+∠BDN=60°,
∴∠CDM1+∠BDN=60°.
∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°.
∴∠M1DN=∠MDN.
∵ND=ND,
∴△MDN≌△M1DN.
∴MN=NM1=NC-CM1=NC-MB.
最终答案:略
解题过程:
(2)附加题:CN-BM=MN
证明:如图,在CN上截取CM1,使CM1=BM,连接MN,DM1
∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠DBM=∠DCM1=90°.
∵BD=CD,
∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC,DM=DM1
∵∠BDM+∠BDN=60°,
∴∠CDM1+∠BDN=60°.
∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°.
∴∠M1DN=∠MDN.
∵ND=ND,
∴△MDN≌△M1DN.
∴MN=NM1=NC-CM1=NC-MB.
最终答案:略