作业帮 > 数学 > 作业

已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:06:48
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列
a,求数列{an}的公比q,b,若a1=1,求数列{n*a(3n-2)}(n属于N)的前n项和Tn
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列
a) 当q=1是,S3=3a1,S9=9a1,S6=6a1,则18a1=9a1 a1=0(舍)
q不等于1时,S3=a1(1-q^3)/(1-q),S9=a1(1-q^9)/(1-q),
S6=a1(1-q^6)/(1-q),2S9=S3+S6 有2q^9=q^3+q^6
2q^6=1+q^3 解得q=1(舍),q=-(1/2)^(1/3)
b) an=a1q^(n-1) a(3n-2)=(-1/2)^(n-1)
Tn=1+2(-1/2)+3(-1/2)^2+...+n(-1/2)^(n-1) ①
(-1/2)Tn=0+(-1/2)+2(-1/2)^2+...+(n-1)(-1/2)^(n-1)+n(-1/2)^n ②
①- ②得 3/2Tn=1+(-1/2)+(-1/2)^2+...+(-1/2)^(n-1)-n(-1/2)^n
=(1-(-1/2)(-1/2)^(n-1))/(1-(-1/2))-n(-1/2)^n
=2/3-2/3(-1/2)^n-n(-1/2)^n
所以 Tn=4/9-(4/9+2n/3)(-1/2)^n