1.函数f(x)对任意的m,n属于R都有f(m+n)=f(m)+f(n)-1,并且当x大于0时f(x)大于1,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 07:34:42
1.函数f(x)对任意的m,n属于R都有f(m+n)=f(m)+f(n)-1,并且当x大于0时f(x)大于1,
(1)求证f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a^2+a-5)1),
(1)证明函数f(x)在(-1,+无穷)上为增函数;
(2)用反证法证明方程f(x)=0没有负数.
(1)求证f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a^2+a-5)1),
(1)证明函数f(x)在(-1,+无穷)上为增函数;
(2)用反证法证明方程f(x)=0没有负数.
1,(1)在R上任取X1,X2,使X1>X2,即X1=x2+m(m>0)
f(x1)-f(x2)=f(x2+m)-f(x2)=f(x2)+f(m)-1-f(x2)=f(m)-1
因为m>0,则f(m)>1,即f(x1)>f(x2)
即得证
(2),f(3)=f(1)+f(2)-1
f(2)=2f(1)-1
得f(1)=2
f(x)为增函数
f(a^2+a-5)0,假设不成立
原命题成立
f(x1)-f(x2)=f(x2+m)-f(x2)=f(x2)+f(m)-1-f(x2)=f(m)-1
因为m>0,则f(m)>1,即f(x1)>f(x2)
即得证
(2),f(3)=f(1)+f(2)-1
f(2)=2f(1)-1
得f(1)=2
f(x)为增函数
f(a^2+a-5)0,假设不成立
原命题成立
函数单调性函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.求证
函数f(x)对任意m,n∈R,都有f(m+n=f(m)+f(n)-1,并且当x大于0,f(x)大于1
已知函数f(x)的定义域为R,对任意实数m、n,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1
定义在(0,+∞)上的函数F(X),对任意的M,N∈(0,+∞)都有F(M*N)=F(M)+(N)成立.且当X大于1时,
函数f(x)的定义域为实数集R,已知x>0时,f(x)>0,并且对任意m,n∈R,都有f(m+n)=f(m)+f(n).
已知函数f(x)对任意实数m,n都有f(m+n)=f(m)+f(n)-1 且当x>0时有
设函数f(x)的定义域为R,对任意实数m,n恒有f(m+n)=f(m)*f(n),且当x>0时,0<f(x)<1.(1)
设函数y=f(x)定义在R上,对于任意实数m,n恒有f(m+n)=f(m)*f(n),且当x大于0时,0小于f(x)小于
函数F(X)的定义域D等于{X|X大于0},满足:对于任意M,N属于0,都有F(M乘N)=F(M)+F(N).求若F(2
1,函数f(x)对于任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时,f(x)>1.求证 f(
设f(x)是定义在R上的函数,对mn(属于R)恒有f(m+n)=f(m).f(n)且当x>0时,0<f(x)<1,f(0
设f(x)是定义在R上的函数,对任意m、n属于R恒有f(m+n)=f(m)*f(n),且当x>时0