一道椭圆的证明题椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个顶点A1(-a,0) A2(a,0)与y轴平行
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:06:39
一道椭圆的证明题
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个顶点A1(-a,0) A2(a,0)与y轴平行的直线交椭圆于P1P2时A1P1 与A2P2交点的轨迹方程是x^2/a^2-y^2/b^2=1
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个顶点A1(-a,0) A2(a,0)与y轴平行的直线交椭圆于P1P2时A1P1 与A2P2交点的轨迹方程是x^2/a^2-y^2/b^2=1
设P1、P2点的坐标分别为(x1,y1)和(x1,-y1),A1P1 的直线方程为:y=y1x/(x1+a)+ay1/(x1+a),A2P2的直线方程为:y=-y1x/(x1-a)+ay1/(x1-a),解得:y1=ay/x,x1=a²/x,代入x²/a²+y²/b²=1得:x²/a²-+y²/b²=1.
一道椭圆中的证明题设L是过椭圆x^2/a^2 + y^2/b^2 =1 (a>b>0)长轴顶点A与长轴垂直的直线,F1
圆锥曲线题 已知A1,A2,B是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的顶点,直线l与椭圆交于异于顶点的P
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0),A1,A2为椭圆的左右顶点. 设F1为椭圆的做焦点,
一个椭圆性质的证明若点A1,A2是椭圆X^2/a^2+Y^2/b^2(a大于b大于零)的两个顶点,点p是x轴上任一定点.
高二椭圆题 F是椭圆X^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,AB是椭圆的两个顶点,椭圆的离心率为1/
一道椭圆的题,已知椭圆x^2/a^2+y^2/b^2=1 (a>b>0)A B是 椭圆上两点,线段AB的垂直平分线与X轴
一道高二椭圆题设A是椭圆 x^2/a^2+y^2/b^2=1(a.>b>0)长轴上的一个顶点,若椭圆上存在点P,使AP⊥
一道高中椭圆题已知A(4,0),B(0,5)是椭圆x^2/16+y^2/25=1的两个顶点,C是椭圆在第一象限内部分上的
已知A,B是椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的两个顶点,M,N是椭圆上关于x轴对称的亮点,直线A
如图,F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2,
F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在
一道数学椭圆题椭圆x^2/a^2+y^2/b^2=1的两焦点为F1、F2,长轴两端点为A1、A2若椭圆上存在一点Q,使角