作业帮 > 数学 > 作业

求正交矩阵T把实对称矩阵A=1 2 4 2 -2 -2 4 2 1 化为对角阵

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 07:14:35
求正交矩阵T把实对称矩阵A=1 2 4 2 -2 -2 4 2 1 化为对角阵
求正交矩阵T把实对称矩阵A=1 2 4 2 -2 -2 4 2 1 化为对角阵
所给矩阵不是对称矩阵!
再问: 打错了。。。
第一行124第二行2-2 2 第三行421
再答: 解: |A-λE| =
1-λ 2 4
2 -2-λ 2
4 2 1-λ

r1-r3
-3-λ 0 3+λ
2 -2-λ 2
4 2 1-λ

c3+c1
-3-λ 0 0
2 -2-λ 4
4 2 5-λ

= -(3+λ)[(-2-λ)(5-λ)-8]
= -(3+λ)(λ^2-3λ-18)
= -(6-λ)(3+λ)^2

所以 A 的特征值为 6, -3, -3

(A-6E)X=0 的基础解系为 a1=(2,1,2)'
(A+3E)X=0 的基础解系为 a2=(1,0,-1)',a3=(1,-4,1)' --已正交

a1,a2,a3单位化构成矩阵T=
2/3 1/√2 1/3√2
1/3 0/√2 -4/3√2
2/3 -1/√2 1/3√2
则T为正交矩阵,且 T^-1AT=diag(6,-3,-3)