线性代数,对称阵化为对角阵
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/07 13:41:19
线性代数,对称阵化为对角阵
2 -2 0
-2 1 -2
0 -2 0
2 -2 0
-2 1 -2
0 -2 0
|A-λE| =
2-λ -2 0
-2 1-λ -2
0 -2 -λ
r1+(1/2)(2-λ)r2 - r3
0 (1-λ)(2-λ)/2 -2(1-λ)
-2 1-λ -2
0 -2 -λ
第1行提出 (1-λ),再按第1列展开 = 2 乘
(2-λ)/2 -2
-2 -λ
2乘到第1行上
2-λ -4
-2 -λ
= λ^2 -2λ - 8 = (λ-4)(λ+2)
所以 |A-λE| =(1-λ)(λ-4)(λ+2)
特征值为 1,4,-2
A-E 化成行简化梯矩阵
1 0 1
0 1 1/2
0 0 0
特征向量为:a1=(2,1,-2)'
A-4E 化成行简化梯矩阵
1 0 -2
0 1 2
0 0 0
特征向量为:a2=(2,-2,1)'
A+2E 化成行简化梯矩阵
1 0 -1/2
0 1 -1
0 0 0
特征向量为:a3=(1,2,2)'
令 P = (a1,a2,a3) ,则P可逆,且P^-1AP = diag(1,4,-2)
2-λ -2 0
-2 1-λ -2
0 -2 -λ
r1+(1/2)(2-λ)r2 - r3
0 (1-λ)(2-λ)/2 -2(1-λ)
-2 1-λ -2
0 -2 -λ
第1行提出 (1-λ),再按第1列展开 = 2 乘
(2-λ)/2 -2
-2 -λ
2乘到第1行上
2-λ -4
-2 -λ
= λ^2 -2λ - 8 = (λ-4)(λ+2)
所以 |A-λE| =(1-λ)(λ-4)(λ+2)
特征值为 1,4,-2
A-E 化成行简化梯矩阵
1 0 1
0 1 1/2
0 0 0
特征向量为:a1=(2,1,-2)'
A-4E 化成行简化梯矩阵
1 0 -2
0 1 2
0 0 0
特征向量为:a2=(2,-2,1)'
A+2E 化成行简化梯矩阵
1 0 -1/2
0 1 -1
0 0 0
特征向量为:a3=(1,2,2)'
令 P = (a1,a2,a3) ,则P可逆,且P^-1AP = diag(1,4,-2)
线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5
利用正交矩阵将对称阵化为对角阵的步骤是什么?
求正交相似变换矩阵'P,将下列实对称矩阵化为对角阵.
线性代数中对称矩阵的正交化.求正交阵P使为对角阵
实对称矩阵化为对角矩阵时
试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵
线性代数,对角阵,这样做对么?
线性代数小问题对于任意的矩阵A,运用初等变换将其化为下三角阵之后,对角线上的元素是否就是它的特征值?
对称矩阵A只能通过正交阵才能化为对角阵吗?如果只是由A的特征向量组成的一般矩阵转换不行吗?
求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样
求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]
线性代数中二次型问题线性代数中二次型化X^TAX作变换X=CY化为标准型,为什么C只是可逆矩阵就有C^TAC=^(对角阵