已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,右焦点为F(1,0)
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 19:22:12
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,右焦点为F(1,0)
若果点F且倾斜角为45°的直线与此椭圆相交于A、B两点,求丨AB丨的值
若果点F且倾斜角为45°的直线与此椭圆相交于A、B两点,求丨AB丨的值
由题意可知,焦半距c=1
则e=c/a=√2/2,则a=√2·c=√2,则b=√(a²-c²)=1
则椭圆方程为:x²+2y²=2
倾斜角为45°的直线斜率为k=1,过F(1,0)的的直线为y=k(x-1)
则此直线方程为y=x-1
将y=x-1代入x²+2y²=2中,得:x²+2(x-1)²=2,即3x²-4x=0,即x(3x-4)=0
则x1=0,x2=4/3
代入y=x-1,得:两个交点分别为(0,-1),(4/3,1/3)
则|AB|=√[(0-4/3)²+(-1-1/3)²]=4√2/3
则e=c/a=√2/2,则a=√2·c=√2,则b=√(a²-c²)=1
则椭圆方程为:x²+2y²=2
倾斜角为45°的直线斜率为k=1,过F(1,0)的的直线为y=k(x-1)
则此直线方程为y=x-1
将y=x-1代入x²+2y²=2中,得:x²+2(x-1)²=2,即3x²-4x=0,即x(3x-4)=0
则x1=0,x2=4/3
代入y=x-1,得:两个交点分别为(0,-1),(4/3,1/3)
则|AB|=√[(0-4/3)²+(-1-1/3)²]=4√2/3
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0
设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线于C相交于A
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,其中左焦点F(-2,0)
已知椭圆x2/a2 +y2/b2=1(a>b>0)的右焦点为F(1,0),离心率e=√2/2,A,B是椭圆上的动点.
已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,
已知椭圆G x2/a2+y2/b2=1(a>b>0)离心率为三分之根号六,右焦点为(2∫2,0),斜率为1的直线L与椭圆
已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F2(3,0)离心率为e 若e=根号3/2,椭圆方程为x
已知椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,离心率e=√2/2,右准线方程为x=2 1.
已知椭圆x2/a2+已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2其中左焦点F(-20)(1)求椭
已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F2(3,0)离心率为e 若e=根号3/2,求椭圆方程