以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 09:18:44
以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,
过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK
(2)如果AB=a,AD= 1a/3(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长
过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK
(2)如果AB=a,AD= 1a/3(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长
(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,
∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,
∴Rt△ADE≌Rt△CBK,∴AE=CK.
(2)在Rt△ABC中,AB= ,AD=BC= ,∴ = = ,
∵S△ABC= AB×BC= AC×BK,∴BK= = = .
(3)连线OG,∵AC⊥DG,AC是⊙O的直接,DE=6,∴DE=EG=6,又∵EF=FG,∴EF=3;∵Rt△ADE≌Rt△CBK,∴DE=BK=6,AE=CK,
在△ABK中,EF=3,BK=6,EF∥BK,∴EF是△ABK的中位线,∴AF=BF,AE=EK=KC;在Rt△OEG中,设OG= ,则OE= ,EG=6, ,∴ ,∴ .
在Rt△ADF≌Rt△BHF中,AF=BF,
∵AD=BC,BF∥CD,∴HF=DF,
∵FG=EF,∴HF-FG=DF-EF,∴HG=DE=6.
∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,
∴Rt△ADE≌Rt△CBK,∴AE=CK.
(2)在Rt△ABC中,AB= ,AD=BC= ,∴ = = ,
∵S△ABC= AB×BC= AC×BK,∴BK= = = .
(3)连线OG,∵AC⊥DG,AC是⊙O的直接,DE=6,∴DE=EG=6,又∵EF=FG,∴EF=3;∵Rt△ADE≌Rt△CBK,∴DE=BK=6,AE=CK,
在△ABK中,EF=3,BK=6,EF∥BK,∴EF是△ABK的中位线,∴AF=BF,AE=EK=KC;在Rt△OEG中,设OG= ,则OE= ,EG=6, ,∴ ,∴ .
在Rt△ADF≌Rt△BHF中,AF=BF,
∵AD=BC,BF∥CD,∴HF=DF,
∵FG=EF,∴HF-FG=DF-EF,∴HG=DE=6.
已知,如图,以矩形abcd的对角线ac的中点为圆心,oa为半径作○o,○o经过bd两点,过点b作bk⊥ac,
如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作圆O.(3)若F是EG的中点.咋做啊》
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
CD为○o的直径,以点D为圆心,DO的长为半径作弧,交○o于两点A,B,试证明:弧AC=弧CB=弧BA
如图在矩形ABCD中,点O在对角线AC上,以OA的长为半径作○O,已知tan∠ACB=√3/2,BC=2
如图,AB是⊙O的直径,C是⊙O上一点,过圆心O作OD⊥AC,D为垂足,E是BC上一点,G是DE的中点,OG的延长线交B
关于初3圆的证明题1.已知:如图,矩形ABCD的对角线交于点O.求证:A,B,C,D 四点都在以点O位圆心,OA长为半径
如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D
已知,如图所示,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O
(2012•东城区二模)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,
已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为