已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 20:12:40
已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
(Ⅰ)函数的导数的为f′(x)=(x+a+1)ex,
当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立;
令f′(x)=0,解得x=-a-1,
f(x),f′(x)的情况如下:
x(-∞,-a-1)-a-1(-a-1,+∞)
f′(x)-0+
f(x)↘极小值↗①当-a-1≤0,即a≥-1时,f(x)在[0,4]上的最小值为f(0),
若满足题意只需f(0)≥e2,解得a≥e2;
②当0<-a-1<4,即-5<a<-1时,f(x)在[0,4]上的最小值为f(-a-1),
若满足题意只需f(-a-1))≥e2,求解可得此不等式无解,
所以a不存在;
③当-a-1≥4,即a≤-5时,f(x)在[0,4]上的最小值为f(4),
若满足题意只需需f(4)≥e2,解得(4+a)e4≥e2,
所以此时,a不存在.
综上实数a的取值范围为a≥e2;
(Ⅱ)由(Ⅰ)知,f(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
∴若a>0,函数F(x)=af(x)的单调性与f(x)的单调性相同,
若a<0,函数F(x)=af(x)的单调性与f(x)的单调性相反,
综上当a>0时,函数F(x)=af(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
当a<0时,函数F(x)=af(x)的增区间为(-∞,-a-1),F(x)=af(x)的单调减区间为(-a-1,+∞).
当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立;
令f′(x)=0,解得x=-a-1,
f(x),f′(x)的情况如下:
x(-∞,-a-1)-a-1(-a-1,+∞)
f′(x)-0+
f(x)↘极小值↗①当-a-1≤0,即a≥-1时,f(x)在[0,4]上的最小值为f(0),
若满足题意只需f(0)≥e2,解得a≥e2;
②当0<-a-1<4,即-5<a<-1时,f(x)在[0,4]上的最小值为f(-a-1),
若满足题意只需f(-a-1))≥e2,求解可得此不等式无解,
所以a不存在;
③当-a-1≥4,即a≤-5时,f(x)在[0,4]上的最小值为f(4),
若满足题意只需需f(4)≥e2,解得(4+a)e4≥e2,
所以此时,a不存在.
综上实数a的取值范围为a≥e2;
(Ⅱ)由(Ⅰ)知,f(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
∴若a>0,函数F(x)=af(x)的单调性与f(x)的单调性相同,
若a<0,函数F(x)=af(x)的单调性与f(x)的单调性相反,
综上当a>0时,函数F(x)=af(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
当a<0时,函数F(x)=af(x)的增区间为(-∞,-a-1),F(x)=af(x)的单调减区间为(-a-1,+∞).
已知函数f(x)=ex+aex(a∈R)(其中e是自然对数的底数)
(2014•漳州二模)已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
已知函数g(x)=ex-1-ax,a∈R,e是自然对数的底数.
(2014•石家庄二模)已知函数f(x)=ex-ax-1(a∈R),其中e为自然对数的底数.
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R. 若a=-1存在k∈R使得方程f(x)=k有3
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R. (1)若a=1,求曲线f(x)在点(1,f(
已知函数f(x)=ex+e-x,其中e是自然对数的底数.
已知函数f(x)=(ax^2+x)e^x,其中e是自然对数的底数,a∈R
已知函数f(x)=(ax2+x)e^x,其中e是自然对数的底数,a∈R
已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
已知函数f(x)=ax-ln(-x),x∈(-e,0)其中e是自然对数的底数,a∈R
已知函数f(x)=ex-kx,x属于R(e是自然对数的底数)