作业帮 > 数学 > 作业

在三角形abc中,tanB=1,tanC=2,b=100,求a

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 06:59:38
在三角形abc中,tanB=1,tanC=2,b=100,求a
在三角形abc中,tanB=1,tanC=2,b=100,求a
法一,可求tan(B+C)=(tanB+tanC)/(1-tanB*tanC)=(1+2)/(1-1*2)=-3,即tanA=3,可得sinA=3√10/10,又tanB=1,知∠B=π/4 由正弦定理易得a=b*sinA/sinB=(100*3√10/10)/(√2/2)=60√5
法二,可过A 作AD垂直BC于D,由tanB=1知角B=45度,易得BD=AD,在直角三角形ACD中,由
AD^2+CD^2=100^2,AD/CD=tanC=2,可解得
AD=40√5,CD=20√5,有a=BC=BD+CD=AD+CD=60√5