如图①,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限,点P从点A出发,沿正方形的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 22:16:42
如图①,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限,点P从点A出发,沿正方形的边按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动,当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.
(1)求正方形ABCD的边长.
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(s)的函数关系式及面积S取最大值时点P的坐标.
(1)求正方形ABCD的边长.
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(s)的函数关系式及面积S取最大值时点P的坐标.
专题:压轴题.
分析:(1)本题要依靠辅助线的帮助.做BF垂直y轴,求出FB、FA、AB的值;(2)由2可知,点P从点A运动到点B用了10s,求出AB的值;(3)本题有多种解法.作PG⊥y轴于G,证明△AGP∽△AFB,求出线段比.然后再求出S的面积以及抛物线的对称轴,最后求出t的最大值.
(1)作BF⊥y轴于F.∵A(0,10),B(8,4)∴FB=8,FA=6,∴AB=10;(2分)(2)由图2可知,点P从点A运动到点B用了10s(1分)∵AB=10∴P、Q两点的运动速度均为每秒一个单位长度;(1分)(3)解法1:作PG⊥y轴于G,则PG∥BF.∴△AGP∽△AFB∴GA
FA
=
AP
AB
,即
GA
6
=
t
10
.∴GA=
3
5
t.∴OG=10−
3
5
t.(2分)又∵OQ=4+t∴S=
1
2
•OQ•OG=
1
2
(t+4)(10−
3
5
t)(2分)即S=−
3
10
t2+
19
5
t+20∵−
b
2a
=−
19
5
2×(−3
10
)
=
19
3
,且
19
3
在0≤t≤10内,∴当t=
19
3
时,S有最大值.此时GP=
4
5
t=
76
15
,OG=10−
3
5
t=
31
5
,∴P(
76
15
,
31
5
)(2分)解法2:由图2,可设S=at2+bt+20,∵抛物线过(10,28)∴可再取一个点,当t=5时,计算得S=
63
2
,∴抛物线过(5,
63
2
),代入解析式,可求得a,b.评分参照解法1;(4)这样的点P有2个.(2分)
分析:(1)本题要依靠辅助线的帮助.做BF垂直y轴,求出FB、FA、AB的值;(2)由2可知,点P从点A运动到点B用了10s,求出AB的值;(3)本题有多种解法.作PG⊥y轴于G,证明△AGP∽△AFB,求出线段比.然后再求出S的面积以及抛物线的对称轴,最后求出t的最大值.
(1)作BF⊥y轴于F.∵A(0,10),B(8,4)∴FB=8,FA=6,∴AB=10;(2分)(2)由图2可知,点P从点A运动到点B用了10s(1分)∵AB=10∴P、Q两点的运动速度均为每秒一个单位长度;(1分)(3)解法1:作PG⊥y轴于G,则PG∥BF.∴△AGP∽△AFB∴GA
FA
=
AP
AB
,即
GA
6
=
t
10
.∴GA=
3
5
t.∴OG=10−
3
5
t.(2分)又∵OQ=4+t∴S=
1
2
•OQ•OG=
1
2
(t+4)(10−
3
5
t)(2分)即S=−
3
10
t2+
19
5
t+20∵−
b
2a
=−
19
5
2×(−3
10
)
=
19
3
,且
19
3
在0≤t≤10内,∴当t=
19
3
时,S有最大值.此时GP=
4
5
t=
76
15
,OG=10−
3
5
t=
31
5
,∴P(
76
15
,
31
5
)(2分)解法2:由图2,可设S=at2+bt+20,∵抛物线过(10,28)∴可再取一个点,当t=5时,计算得S=
63
2
,∴抛物线过(5,
63
2
),代入解析式,可求得a,b.评分参照解法1;(4)这样的点P有2个.(2分)
如图①,正方形ABCD的顶点A、B的坐标分别为(0,10)、(8,4),顶点C、D在第一象限.点P从点A出发,沿正方形按
已知正方形ABCD的顶点A,B的坐标分别为A(1,0),B(5,3),D点在第二象限,求顶点C的坐标.
若动点P从单位正方形ABCD的顶点D(0,0)出发,沿正方形的4条边运动一周(D-A-B-C-D)到达点D.当x表示点P
58.(甘肃省兰州市)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动
13如图20,已知有两个动点P,Q,E,F分别从正方形ABCD的顶点A,B,C,D同时出发,沿AB,BC,CD,DA以同
已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方
如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(4,0),点C的坐标为(0,2),O为坐标原点.设P点在第一象限
已知:如图,甲乙两人分别从正方形广场ABCD的顶点B,C同时出发,甲由点C向点D运动,乙由点B向
如图,有四个动点P、Q、R、S分别从正方形ABCD的顶点A、B、C、D同时出发,沿着AB、BC、CD、DA以同样的速度向
如图正方形ABCD的顶点C在直线a上,且点B,D到a的距离分别是1,2.则这个正方形的边长为( )
在平面直角坐标系中,正方形ABCD的三个顶点坐标分别为A(0,0),B(-2,0),D(0,2),则C点的坐标是
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)