证明多项式f(x)=x^3+3x+1在有理数域上不可约
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 20:15:51
证明多项式f(x)=x^3+3x+1在有理数域上不可约
大学高等代数求帮助!
大学高等代数求帮助!
一个3次多项式若在有理数域上可约则必含有有理的1次因子.
换句话说必须有有理根.
假设f(x)有有理根p/q,其中p,q为互质的整数.
f(x)作为整系数多项式,可以证明p整除常数项,而q整除首项系数.
对f(x) = x^3+3x+1来说,只有p/q = 1或-1.
但容易验证1和-1都不是f(x)的根,因此f(x)没有有理根,故在有理数域上不可约.
注意,对于4次及以上的有理系数多项式,
没有有理根只是在有理数域上不可约的必要非充分条件.
换句话说必须有有理根.
假设f(x)有有理根p/q,其中p,q为互质的整数.
f(x)作为整系数多项式,可以证明p整除常数项,而q整除首项系数.
对f(x) = x^3+3x+1来说,只有p/q = 1或-1.
但容易验证1和-1都不是f(x)的根,因此f(x)没有有理根,故在有理数域上不可约.
注意,对于4次及以上的有理系数多项式,
没有有理根只是在有理数域上不可约的必要非充分条件.
f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积
a=根号2加根号3,证明,存在有理数域上的不可约多项式f(x),使f(a)=0
设f(x)=∑aix^i是有理域上的不可约多项式,证明f(x)的任意两个不同根之和不可能是有理数
一个多项式的证明题:设整系数多项式f(x)对无限个整数值x的函数值都是素数,则 f(x)在有理数域上不可约.
高等代数多项式问题:f有理数域不可约可约问题的充要条件g(x)=f(ax+b)不可约,在具体做题中b怎么取
在复数域,有理数域将f(x)=x^9+x^8.x^2+x^1+1分解为不可约因式的乘积!
在有理数域上分解以下多项式为不可越因式的乘积 x^3-2x^2-2x+1
x^4+1在实数域上是否是不可约多项式?
设F包含于E为代数扩张,a∈E,证明存在F上不可约多项式f(x),使得f(a)=0
多项式在各个数域中怎么标准分解?例如f(x)=x^5-x^4-2x^3+2x^2+x-1在有理数域,复数域,实数域上的分
高等代数多项式有理数域可约问题,f不可约的充要条件是g(x)=f(ax+b)不可约,怎么样才能找到适合的b呢?
设P(X)G(X)都是f(x)上的不可约多项式.证明:若 p(x)整除g(x),则p(x)=cg(x),这里c(不为0)