a1=3,an+1=3an/an+2,求an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:37:34
a1=3,an+1=3an/an+2,求an
你这题若是a(n+1)=3a(n)/a(n+2),则没法求解
若是a(n+1)=3a(n)/[a(n)+2],则可以求解
由 a(n+1)=3a(n)/[a(n)+2] 可得:
1/a(n+1) = [a(n)+2]/[3a(n)] = 1/3 + (2/3)[1/a(n)]
即:1/a(n+1) - 1 = 1/3 + (2/3)[1/a(n)] - 1 = (2/3)[1/a(n)] - 2/3 = (2/3)[1/a(n) - 1]
数列 { 1 - 1/a(n) } 满足:[1 - 1/a(n+1)] / [1 - 1/a(n)] = 2/3
1 - 1/a(n) = [1 - 1/a(1)](2/3)^(n-1)
由于:1 - 1/a(1) = 1-1/3=2/3
所以:1 - 1/a(n) = (2/3)^n
1/a(n) = 1-(2/3)^n
所以:a(n) = 1/[1-(2/3)^n] = (3^n)/(3^n-2^n)
若是a(n+1)=3a(n)/[a(n)+2],则可以求解
由 a(n+1)=3a(n)/[a(n)+2] 可得:
1/a(n+1) = [a(n)+2]/[3a(n)] = 1/3 + (2/3)[1/a(n)]
即:1/a(n+1) - 1 = 1/3 + (2/3)[1/a(n)] - 1 = (2/3)[1/a(n)] - 2/3 = (2/3)[1/a(n) - 1]
数列 { 1 - 1/a(n) } 满足:[1 - 1/a(n+1)] / [1 - 1/a(n)] = 2/3
1 - 1/a(n) = [1 - 1/a(1)](2/3)^(n-1)
由于:1 - 1/a(1) = 1-1/3=2/3
所以:1 - 1/a(n) = (2/3)^n
1/a(n) = 1-(2/3)^n
所以:a(n) = 1/[1-(2/3)^n] = (3^n)/(3^n-2^n)
已知等差数列{an}中,a1=2.an+1=an+3分之an 求an
a1=3,an=2an-1+3 证{an+3}等比,并求an
数列{an},a1=1,an+1=2an-n^2+3n,求{an}.
a1=1 an+1=an/2an+3,用两种方法求an
数列{an}满足a1=1,且an=an-1+3n-2,求an
在等差数列an中,a1=2,3an+1-an=0,求an
数列an中,a1=3,an+1=an/2an+1,则an=?
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an
在数列an中,a1=2,an+1=an/an+3,求an 麻烦讲得详细点
已知{an}中a1=1 且an+1=3an+4求an
已知a1=2,an+1=2an-1/3求an
已知a1=1,an-1=2an+3,求an