方程定积分0到x根号下(1+t^2)dt+定积分cosx到0(e^-t^2)dt=0在[0,兀/2]的实根个数是
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:33:20
方程定积分0到x根号下(1+t^2)dt+定积分cosx到0(e^-t^2)dt=0在[0,兀/2]的实根个数是
设ƒ(x) = ∫(0→x) √(1 + t²) dt + ∫(cosx→0) e^(- t²) dt,x∈[0,π/2]
ƒ(0) = ∫(1→0) e^(- t²) dt = - ∫(0→1) e^(- t²) dt < 0
ƒ(π/2) = ∫(0→π/2) √(1 + t²) dt > 0
∴ƒ(x) = 0 在 [0,π/2]内必有实数根.
设有0 ≤ a ≤ b ≤ π/2
ƒ(b) - ƒ(a)
= [∫(0→b) √(1 + t²) dt + ∫(cosb→0) e^(- t²) dt] - [∫(0→a) √(1 + t²) dt + ∫(cosa→0) e^(- t²) dt]
= [∫(0→b) √(1 + t²) dt + ∫(a→0) √(1 + t²) dt] + [∫(cosb→0) e^(- t²) dt + ∫(0→cosa) e^(- t²) dt]
= ∫(a→b) √(1 + t²) dt + ∫(cosb→cosa) e^(- t²) dt
已知√(1 + t²)在[0,+∞)严格递增
e^(- t²)在[0,+∞)严格递减,e^(- t²) > 0
由于cosx在[0,π/2]内严格递减,所以a ≤ b cosa ≥ cosb
即∫(a→b) √(1 + t²) + ∫(cosb→cosa) e^(- t²) dt > 0
因此ƒ(x)也是单调函数,所以只有一个实数根.
ƒ(0) = ∫(1→0) e^(- t²) dt = - ∫(0→1) e^(- t²) dt < 0
ƒ(π/2) = ∫(0→π/2) √(1 + t²) dt > 0
∴ƒ(x) = 0 在 [0,π/2]内必有实数根.
设有0 ≤ a ≤ b ≤ π/2
ƒ(b) - ƒ(a)
= [∫(0→b) √(1 + t²) dt + ∫(cosb→0) e^(- t²) dt] - [∫(0→a) √(1 + t²) dt + ∫(cosa→0) e^(- t²) dt]
= [∫(0→b) √(1 + t²) dt + ∫(a→0) √(1 + t²) dt] + [∫(cosb→0) e^(- t²) dt + ∫(0→cosa) e^(- t²) dt]
= ∫(a→b) √(1 + t²) dt + ∫(cosb→cosa) e^(- t²) dt
已知√(1 + t²)在[0,+∞)严格递增
e^(- t²)在[0,+∞)严格递减,e^(- t²) > 0
由于cosx在[0,π/2]内严格递减,所以a ≤ b cosa ≥ cosb
即∫(a→b) √(1 + t²) + ∫(cosb→cosa) e^(- t²) dt > 0
因此ƒ(x)也是单调函数,所以只有一个实数根.
函数定积分d/dt(sint/t^2+1)dt函数积分x^2到0
微积分 定积分定积分(0到x平方) 根号(1+t平方) dt定积分 (x到2) t平方cos2t dt求上两式的值,
∫√1+t^2 dt在0到sinx上的定积分
定积分(0到x)(t^2)/(1-t^2)dt
Fx=( sint/t dt. 在x到(派/2)上的定积分.) 求Fx在 0到( 派/2)上的定积分dx. ...
定积分∫tf(x-t)dt(0到x)=1-cosx,则∫f(x)dx(0到π/2)
d (定积分[cosx,1]e^(-t)^2)dt/dx
定积分f(x)=∫0到1|x-t|dt的表达式
求定积分f(x)=∫0到1|x-t|dt的表达式
若V(x)=定积分x到0 [1/根号(1+t^2)]dt ,则V(x)的导数为
F(x)=sint^2dt从2t到0的定积分,求F(x)的导数
高数:已知f(x)=x-2∫f(t)dt.[是0到1上的定积分],求f(x)