数列{an}中a1=2,对n∈N+,a(n+1)=(an/2)++(1/an),若an≤a恒成立,则a的取值范围
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 02:46:33
数列{an}中a1=2,对n∈N+,a(n+1)=(an/2)++(1/an),若an≤a恒成立,则a的取值范围
a(n+1)=(an/2)+(1/an)
2a(n+1)an=(an)^2+2
2[a(n+1)-√2]an=(an)^2-2√2an+2=(an-√2)^2
2[a(n+1)+√2]an=(an)^2+2√2an+2=(an+√2)^2
两式相除:
[a(n+1)-√2]/[a(n+1)+√2]=(an-√2)^2/(an+√2)^2
设bn=(an-√2)/(an+√2),b1=(a1-√2)/(a1+√2)=(1-√2)/(1+√2)=2√2-3
b(n+1)=(bn)^2
={[b(n-1)]^2}^2=[b(n-1)]^4
={[b(n-2)]^2}^4=[b(n-1)]^(2^3)
……
=[(b2)^2]^[2^(n-2)]=(b2)^[2^(n-1)]
=[(b1)^2]^[2^(n-1)]=(b1)^(2^n)
=(2√2-3)^(2^n)
bn=(2√2-3)^[2^(n-1)]
(an-√2)/(an+√2)=bn=(2√2-3)^[2^(n-1)]
an-√2={(2√2-3)^[2^(n-1)]}(an+√2)
={(2√2-3)^[2^(n-1)]}an+{(2√2-3)^[2^(n-1)]}√2
{1-(2√2-3)^[2^(n-1)]}an=√2{1+(2√2-3)^[2^(n-1)]}
an=√2{1+(2√2-3)^[2^(n-1)]}/{1-(2√2-3)^[2^(n-1)]}
2a(n+1)an=(an)^2+2
2[a(n+1)-√2]an=(an)^2-2√2an+2=(an-√2)^2
2[a(n+1)+√2]an=(an)^2+2√2an+2=(an+√2)^2
两式相除:
[a(n+1)-√2]/[a(n+1)+√2]=(an-√2)^2/(an+√2)^2
设bn=(an-√2)/(an+√2),b1=(a1-√2)/(a1+√2)=(1-√2)/(1+√2)=2√2-3
b(n+1)=(bn)^2
={[b(n-1)]^2}^2=[b(n-1)]^4
={[b(n-2)]^2}^4=[b(n-1)]^(2^3)
……
=[(b2)^2]^[2^(n-2)]=(b2)^[2^(n-1)]
=[(b1)^2]^[2^(n-1)]=(b1)^(2^n)
=(2√2-3)^(2^n)
bn=(2√2-3)^[2^(n-1)]
(an-√2)/(an+√2)=bn=(2√2-3)^[2^(n-1)]
an-√2={(2√2-3)^[2^(n-1)]}(an+√2)
={(2√2-3)^[2^(n-1)]}an+{(2√2-3)^[2^(n-1)]}√2
{1-(2√2-3)^[2^(n-1)]}an=√2{1+(2√2-3)^[2^(n-1)]}
an=√2{1+(2√2-3)^[2^(n-1)]}/{1-(2√2-3)^[2^(n-1)]}
通项公式为an=an^2+n的数列,若满足a1<a2<a3<a4<a5,且an>a(n+1)对n≥8恒成立,则实数a的取
设数列{an}中,a1=2,a(n+1)=an+n+1,求an
已知数列{an}中,a1=1,a(n+1)>an,且[a(n+1)-an]^2-2[a(n+1)+an]+1=0,则an
已知数列an中,a1=2,a(n+1)=an+3,若an=2009,则n=
若数列{an}中,a1=3,且a(n+1)=an^2(n属于N*) 则数列{an}的通向公式为?
数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值为_
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)
数列竞赛题!在线等!数列{an},a1=2/3,a(n+1)=an^2+a(n-1)^2+.+a1^2(n∈N+),若对
已知在数列An中,A1=2 A(n+1)=An+n 求An的通项公式
数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,则k的取值范围是
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式
在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,证明数列{an/n^2}是等比数列,并求{an}的