作业帮 > 数学 > 作业

关于求圆的方程问题设圆满足1.截y轴所得的弦长为2.2.被X轴分为两段,其弧长之比为3:1.3.圆心到直线L:X—2y=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:01:32
关于求圆的方程问题
设圆满足1.截y轴所得的弦长为2.2.被X轴分为两段,其弧长之比为3:1.3.圆心到直线L:X—2y=0的距离为√(5)/5,求圆的方程
关于求圆的方程问题设圆满足1.截y轴所得的弦长为2.2.被X轴分为两段,其弧长之比为3:1.3.圆心到直线L:X—2y=
设圆心(x,y),半径r
可得
y^2+1=r^2
x=2y+1或2y=x+1
y=r/(根号2)
∴r=根号2
y=1,x=1
∴圆方程为(y-1)^2+(x-1)^2=2
圆已知圆满足:1.截y轴所得弦长为2.2.被x轴分成两段圆弧,其弧长的比为3:13.圆心到直线l:x-2y=0距离最小求 设圆满足 截y轴所得弦长为2.被x轴分成两段圆弧,共弧长之比为3:1.圆心到直线L:x-2y=0的距离为5分之根 已知圆满足:截y轴所得弦长为2;被x周分成两段圆弧,其弧长之比为3:1;圆心到直线x-2y=0的距离为根号5/5 圆满足截Y轴所得弦长为2 被X轴分成两段圆弧 弧长比3:1 圆心到直线L:X-2Y=0距离为五分之根号五 该园方程 设圆满足截Y轴所得弦长为2,被X轴分成两段圆弧其弧长的比为3:1.求圆心到直线X-2Y=0的距离最小的圆的方程 设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线l:x-2y=0的距离为根号5/5 高一圆的方程设圆满足条件:①截y轴所得的弦长为2②被x轴分成两段圆弧,其弧长的比为3:1③圆心到直线l:x-2y=0的距 设圆同时满足以下三个条件,求圆方程(1)截y轴所得弦长为2,(2)被x轴分为两段圆弧,其弧长之比为3:1.(3)圆心到直 设圆满足,截Y轴所得弦长为2;被X轴分成两段圆弧,孤长比为2:1;圆心到直线l:x-2y=0的距离为五分之根号五,求圆的 设圆满足(1)截y轴所得弦长为2(2)被x轴分成两段圆弧,其弧长比为3:1,在满足(1)(2)的所有圆中,求圆心到直线L 已知圆满足:①截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长比为3:1.在满足条件的所有圆中,求圆心到直线l:x-2y 设圆满足:截Y轴所得的弦长为2,被X轴分成两段弧,其弧长之比为3:1,在满足条件的所有圆中,求圆心到直线L:X-2Y=0