作业帮 > 数学 > 作业

图形,表述一下【BC//AD,BA>CD,BC>AD】

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 19:28:28
图形,表述一下【BC//AD,BA>CD,BC>AD】
在四边形ABCD中,∠D=90°,BC//AD,BC=20,DC=16,AD=30,动点P从点D出发,延射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向B运动,点P、Q分别从点D、C同时出发,党点Q运动到点B时,点P随之停止运动,设运动时间为T(秒)
1】设△BPQ的面积为S,求S于T之间的函数解析式
2】当T为何值时,以B、P、Q三点为顶点的三角形是等腰三角形
3】当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值
4】是否存在时刻T,是得PQ⊥BD?若存在,求出T的值,却不存在,请说明理由.
图形,表述一下【BC//AD,BA>CD,BC>AD】
一样的题目,只是有个别数字有变化.
参考一下:
【05河北】如图,在直角梯形ABCD中,AD‖BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
【解】(1)如图3,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=12
∵QB==6-t,∴S=(1/2)×12×(16-t)=96-t
(2)由图可知:CM=PD=2t,CQ=t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:
①若PQ=BQ.在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得t=7/2;
②若BP=BQ.在Rt△PMB中,BP2=(16-t)2+122.由BP2=BQ2得:
(16-2t)2+122=(16-t)2即3t2-32t+144=0.
由于Δ=-704