有关不等式的证明设a,b,c是正实数,且abc=1,求证:1/(1+2a)+1/(1+2b)+1/(1+2c)>=1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:38:04
有关不等式的证明
设a,b,c是正实数,且abc=1,求证:
1/(1+2a)+1/(1+2b)+1/(1+2c)>=1
设a,b,c是正实数,且abc=1,求证:
1/(1+2a)+1/(1+2b)+1/(1+2c)>=1
我来试试吧...
总体思路:用局部不等式的方法,
我们构造...
1/(1+2a)≥ (a^k)/(a^k+b^k+c^k),
上式等价于 b^k+c^k ≥ 2a^(k+1)
这由平均值不等式和abc=1
b^k+c^k≥2√(b^kc^k)=2√(a^-k)令=2a^(k+1)
解得k=-2/3
同理,
1/(1+2b)≥ (b^k)/(a^k+b^k+c^k),
1/(1+2c)≥ (c^k)/(a^k+b^k+c^k),
把以上三式相加便可
总体思路:用局部不等式的方法,
我们构造...
1/(1+2a)≥ (a^k)/(a^k+b^k+c^k),
上式等价于 b^k+c^k ≥ 2a^(k+1)
这由平均值不等式和abc=1
b^k+c^k≥2√(b^kc^k)=2√(a^-k)令=2a^(k+1)
解得k=-2/3
同理,
1/(1+2b)≥ (b^k)/(a^k+b^k+c^k),
1/(1+2c)≥ (c^k)/(a^k+b^k+c^k),
把以上三式相加便可
有关不等式证明的1.a,b,c,d都是正实数,且a+b+c+d=1,证明abc+abd+acd+bcd《1/162.a,
设a,b,c是正实数,且(a+1)(b+1)(c+1)=8,证明abc≤1
数学不等式求证题设a,b,c均为正实数,求证(1/2a)+(1/2b)+(1/2c)>=(1/(b+c))+(1/(c+
设a,b,c,是正实数,且abc=1 .求证1/(1+2a)+1/(1+2b)+1/(1+2c)≥1
设a,b,c为正实数,且abc=1,证明:见图片
不等式证明习题已知a+b+c=1,a,b,c均属于正实数,求证1/a + 2/b + 4/c>=18.
设a,b,c为正实数,求证1/a+1/b+1/c+abc≥2√3
设实数a,b,c满足a≤b≤c,且a^2+b^2+c ^2=9.证明abc+1>3a
简单的不等式证明已知a,b,c是正实数,且a+b+c=1.求证:(1/a-1)(1/b-1)(1/c-1)>=8
a/b+b/c+c/a+3(abc)^(1/3)/a+b+c>=4证明上面不等式成立,其中a.b.c都是正实数.
已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8
基本不等式证明已知a,b,c属于R+(正实数),求证1/2(a+b)^2 + 1/4(a+b)大于等于 a根号b+b根号