设函数f(x)=x^m+ax的导函数为f‘(x)=2x+1,数列{1/f(n)}(n∈N*)的前n项和为Sn,则Sn的极
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:27:23
设函数f(x)=x^m+ax的导函数为f‘(x)=2x+1,数列{1/f(n)}(n∈N*)的前n项和为Sn,则Sn的极限为()
A、1
B、1/2
C、0
D、不存在
A、1
B、1/2
C、0
D、不存在
设函数f(x)=x^m+ax的导函数为f‘(x)=2x+1,数列{1/f(n)}(n∈N*)的前n项和为Sn,则Sn的极限为()A、1;B、1/2;C、0;D、不存在
f(x)=∫(2x+1)dx=x²+x+c=x^m+ax,故m=2,a=1,c=0,即f(x)=x²+x
1/f(n)=1/(n²+n)=1/[n(n+1)]=(1/n)-1/(n+1)
故S‹n›=(1-1/2)+(1/2-1/3)+(1/3-1/4)+.+[1/n-1/(n+1)]=1-1/(n+1)
∴n→∞limS‹n›=n→∞lim[1-1/(n+1)]=1,故应选A.
f(x)=∫(2x+1)dx=x²+x+c=x^m+ax,故m=2,a=1,c=0,即f(x)=x²+x
1/f(n)=1/(n²+n)=1/[n(n+1)]=(1/n)-1/(n+1)
故S‹n›=(1-1/2)+(1/2-1/3)+(1/3-1/4)+.+[1/n-1/(n+1)]=1-1/(n+1)
∴n→∞limS‹n›=n→∞lim[1-1/(n+1)]=1,故应选A.
已知数列{an}的前n几项和为Sn,点(n,Sn)在函数f(x)=2^x-1图像上,数列{bn}
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn/n)都在函数f(x)=x+an/2x的图像上
已知二次函数f(x)=3x^2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图像
已知函数f(x)=3x2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数f(x)的图象上
已知函数f(x)的图像过坐标原点,且f'(x)=4x-1,数列an的前n项和为Sn=f(n)(n为N+),bn为等比数列
已知等差数列an的前n项和为sn,点(n,sn)(n∈n*)在函数f(x)=2^x-1图像上,则数列﹛1/an﹜前n项和
设函数f(x)=x^m+ax的导数是f`(x)=2x+1则数列{1/f(n)}的前n项和为
已知二次函数y=f(x)的图像经过坐标原点,其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)
已知函数f(x)=x2+2x,数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上,
已知f(x)=ax^2+bx的导函数f‘(x)=-2x+7,数列an的前n相和为sn,点P(n,sn)均在函数y=f(x
设数列{an}的前n项和为Sn,对一切n∈N+,点(n,Sn/n)均在函数f(x)=3x+2的图像上
已知二次函数y=f(x)的图像经过坐标原点,其导函数为3x-1/2,数列an的前n项和Sn=f(n)(n∈N﹢),an+