作业帮 > 数学 > 作业

如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合).连接DP交对角线AC于E,连接BE.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:43:48
如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合).连接DP交对角线AC于E,连接BE.
(1)说明角APD=角CBE;
(2)试问P点运动到什么位置时,三角形ADP的面积等于菱形ABCD面积的1/4?为什么?
如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合).连接DP交对角线AC于E,连接BE.
证明:(1)∵四边形ABCD是菱形
∴BC=CD,AC平分∠BCD(2分)
∵CE=CE
∴△BCE≌△DCE(4分)
∴∠EBC=∠EDC
又∵AB∥DC
∴∠APD=∠CDP(5分)
∴∠EBC=∠APD(6分)
(2)当P点运动到AB边的中点时,S△ADP= 1/4S菱形ABCD.(8分)
连接DB
∵∠DAB=60°,AD=AB
∴△ABD等边三角形(9分)
∵P是AB边的中点
∴DP⊥AB(10分)
∴S△ADP= 12AP•DP,S菱形ABCD=AB•DP(11分)
∵AP= 12AB
∴S△ADP= 12× 12AB•DP= 1/4S菱形ABCD
即△ADP的面积等于菱形ABCD面积的 1/4.(12分)
分析:(1)可先证△BCE≌△DCE得到∠EBC=∠EDC,再根据AB∥DC即可得到结论.
(2)当P点运动到AB边的中点时,S△ADP= 1/4S菱形ABCD,证明S△ADP= 12× 12AB•DP= 1/4S菱形ABCD即可.