用夹逼定理求lim(n→∞)[√(n^2+n)-n]^(1/n)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 17:09:24
用夹逼定理求lim(n→∞)[√(n^2+n)-n]^(1/n)
首先观察,√(n^2+n)-n=n/[√(n^2+n)+n],它在n→∞时于1/2,而1/n→0.这里并没有出现类似“0^0”“1^∞”的极限不定式,因此可以猜测lim(n→∞)[√(n^2+n)-n]^(1/n)=1.
要用夹逼定理证明这个结论,只需要证明√(n^2+n)-n在两个常数之间(这时再给它们加个1/n次方,再取极限,就都是1了).
而√(n^2+n)-n=n/[√(n^2+n)+n]=n/[√(n^2+n)+n]=1/[√(1+1/n)+1]单增,故有√(2)-1<√(n^2+n)-n<1/2,分析完毕.
证明:
由于√(n^2+n)-n=n/[√(n^2+n)+n]=n/[√(n^2+n)+n]=1/[√(1+1/n)+1]单增,
故有√(2)-1<√(n^2+n)-n<1/2
[√(2)-1]^(1/n)<[√(n^2+n)-n]^(1/n)<(1/2)^(1/n)
故1=lim(n→∞)[√(2)-1]^(1/n)≤lim(n→∞)[√(n^2+n)-n]^(1/n)≤lim(n→∞)(1/2)^(1/n)=1
即有lim(n→∞)[√(n^2+n)-n]^(1/2)=1.
要用夹逼定理证明这个结论,只需要证明√(n^2+n)-n在两个常数之间(这时再给它们加个1/n次方,再取极限,就都是1了).
而√(n^2+n)-n=n/[√(n^2+n)+n]=n/[√(n^2+n)+n]=1/[√(1+1/n)+1]单增,故有√(2)-1<√(n^2+n)-n<1/2,分析完毕.
证明:
由于√(n^2+n)-n=n/[√(n^2+n)+n]=n/[√(n^2+n)+n]=1/[√(1+1/n)+1]单增,
故有√(2)-1<√(n^2+n)-n<1/2
[√(2)-1]^(1/n)<[√(n^2+n)-n]^(1/n)<(1/2)^(1/n)
故1=lim(n→∞)[√(2)-1]^(1/n)≤lim(n→∞)[√(n^2+n)-n]^(1/n)≤lim(n→∞)(1/2)^(1/n)=1
即有lim(n→∞)[√(n^2+n)-n]^(1/2)=1.
用夹逼定理求极限:lim(n→∞)n!/n^n
求lim n→∞ (1+2/n)^n+3
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
为什么在求极限lim(1+2^n+3^n)^1/n.n-->无穷.的证明中 用夹逼定理时 (1+2^n+3^n)^1/n
求极限n~∞,lim(n+1)/2n
求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)
求极限lim(n→∞)(3n^2-n+1)/(2+n^2)?
求极限:lim(n→∞)[(3n+1 )/(3n+2)]^(n+1)
求一道极限题lim[(a^1/n+b^1/n)/2]^n n→∞