选修,椭圆,急设椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1.F2(1)若A.B分别为椭圆的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:58:52
选修,椭圆,急
设椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1.F2
(1)若A.B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,OP‖AB(O为椭圆中心)时,求椭圆的离心率
(2)若在椭圆上存在一点P,使PF1⊥PF2,求圆心率的取值范围
设椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1.F2
(1)若A.B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,OP‖AB(O为椭圆中心)时,求椭圆的离心率
(2)若在椭圆上存在一点P,使PF1⊥PF2,求圆心率的取值范围
①∵PF1⊥F1A,OP‖AB
∴△PF1O∽△BOA
∴PF1/BO=OF1/AO
即(b²/a)/c=b/a
∴b=c
∴a=√2c
∴e=c/a=(√2)/2
②设PF1=m,则PF2=2a-m
∵PF1⊥PF2
∴m²+(2a-m)²=(2c)²
即m²-2am+2a²-2c²=0
∴△≥0
即(2a)²-4(2a²-2c²)≥0
∴8c²≥4a²
∴e²≥1/2
∴e≤-(√2)/2或e≥(√2)/2
又∵0〈e〈1
∴(√2)/2≤e〈1
∴△PF1O∽△BOA
∴PF1/BO=OF1/AO
即(b²/a)/c=b/a
∴b=c
∴a=√2c
∴e=c/a=(√2)/2
②设PF1=m,则PF2=2a-m
∵PF1⊥PF2
∴m²+(2a-m)²=(2c)²
即m²-2am+2a²-2c²=0
∴△≥0
即(2a)²-4(2a²-2c²)≥0
∴8c²≥4a²
∴e²≥1/2
∴e≤-(√2)/2或e≥(√2)/2
又∵0〈e〈1
∴(√2)/2≤e〈1
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点
设F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点
设F1,F2分别为椭圆C:X^2/A^2+Y^2/B^2=1(A>B>0)的左右焦点
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F2的直线l与椭圆C相交于A,B
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F1,F2分别为椭圆C的左右焦点,若椭圆C
关于椭圆的设F1.F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F2的直线与椭圆C相
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1、F2分别为椭圆的左右焦点,A为椭圆的上顶点,
设椭圆x^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点分别为f1,f2,A是椭圆上一点,AF2垂直F1F2
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>c)的离心率为1/2,F1、F2分别为椭圆C的左右两焦点,若椭圆
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别是椭圆的左右焦点,A为椭圆上顶点,
设椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2,已知椭圆E上的任意一点P,满足向量
设椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的左右两个焦点分别为F1 F2,已知椭圆E上的任意一点P,满足