作业帮 > 数学 > 作业

关于直线和圆的高一数学题~

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 00:18:56
关于直线和圆的高一数学题~
圆C:x^2+y^2=25,过定点P(4,0)的直线l交圆C于A,B两点.
1.若|AP|=3|PB|,求直线l的斜率
2.求△AOB面积的取值范围
3.若圆内点P'的坐标为(a,0)且过点P'的直线l交圆于M,N两点,|MN|=4求a的取值范围
关于直线和圆的高一数学题~
方法一:用到一个结论:平行四边形对角线的平方和等于四条边的平方和(坐标法,向量法,余弦定理均可证明)
把平行四边形切去一半,剩下三角形和中线,由上面的结论可得,|AP|^2+|BP|^2=(4PO^2+AB^2)/2,其中o为坐标原点.故,要想所求平方和最小,只需PO最小(AB=2为已知)
显然OPC共线时PO最小,其中C为圆心.
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=(36+4)/2=20
方法二:设P点坐标为(x,y),则|AP|^2+|BP|^2=(x+1)^2+y^2+(x-1)^2+y^2=2(x^2+y^2)+2=2PO^2+2
要想上式最小,只需PO最小,显然OPC共线时PO最小,其中C为圆心.
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=20