[线代]线性相关n维单位向量组构成矩阵E E=(e1,e2...en)由I E I=1知R(E)=n 这是为什么?e1=
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 00:04:05
[线代]线性相关
n维单位向量组构成矩阵E E=(e1,e2...en)
由I E I=1知R(E)=n 这是为什么?
e1=e2=...en 都是单位矩阵,他们组成的矩阵
是3 X 3n阶矩阵,秩应该是等于3才对啊?
A=(a1.am)
B=(a1.am,am+1)
有R(B)≤R(A)+1
这个+1是怎么来的?为什么R(B)≤R(A)+1
那么e1 是
1
1
1 }n个
...
1
n维单位向量组构成矩阵E E=(e1,e2...en)
由I E I=1知R(E)=n 这是为什么?
e1=e2=...en 都是单位矩阵,他们组成的矩阵
是3 X 3n阶矩阵,秩应该是等于3才对啊?
A=(a1.am)
B=(a1.am,am+1)
有R(B)≤R(A)+1
这个+1是怎么来的?为什么R(B)≤R(A)+1
那么e1 是
1
1
1 }n个
...
1
1.n维向量指每一个向量都有n个参数,由n个n维向量组成的矩阵当然是n*n的矩阵,因为|E|=1不等于0,矩阵满秩,秩为n.
2.首先假想把A和B中(a1.am)都化为最简型,B中am+1也随之简化.A中只剩下R(A)×R(A)单位矩阵,B
中可能剩下R(A)×(R(A)+1)矩阵,或者R(A)×R(A)单位矩阵,(其余都是0).所以R(B)≤R(A)+1
3.e1 是
x1
x2
x3 }n个数平方和为1
...
xn
2.首先假想把A和B中(a1.am)都化为最简型,B中am+1也随之简化.A中只剩下R(A)×R(A)单位矩阵,B
中可能剩下R(A)×(R(A)+1)矩阵,或者R(A)×R(A)单位矩阵,(其余都是0).所以R(B)≤R(A)+1
3.e1 是
x1
x2
x3 }n个数平方和为1
...
xn
设e1,e2是两个不共线向量,已知AB=2e1-8e2+CB=e1+3e+CD=2e1-e2
1,已知e1,e2,是家教为60°的两个单位向量,则a=e1+e2:b=-3e1+2e2的夹角是_______(a,e都
e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1
问道向量题目已知向量e1.e2满足|e1|=2,|e2|=1,且e1.e2的夹角为60度,设向量2te1+7e2与向量e
任一n维向量必能由n维初始单位向量组e1,e2,…,en线性表示.这句话正确还是错误?
关于空间向量的题目提示:a,b,c,d,e1,e2,e3均为向量题目是这样的:若a=e1+e2+e3,b=e1+e2-e
已知e1,e2是互相垂直的单位向量,则e1(e1-e2)=
证明若n阶方阵A有n个对应特征值λ且线性无关的特征向量,则A=λI(大学线代)给好评给采纳,I是单位矩阵,有的地方也用E
=SUM(INDIRECT("E1:E"&ROW()-1))
1、设e1,e2是两个不共线的向量,则向量a=2e1-e2与向量b=e1+λe2(λ∈R)共线的充要条件是( )
设e1,e2,是两个垂直的单位向量,且a=—(2e1+e2),b =e1-ye2
已知e1,e2是相互垂直的单位向量,且a=3e1+2e2