已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:26:58
已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
√[(x²+y²)/2]+2/(1/x+1/y)≥(x+y)/2+√﹙xy﹚
√[(x²+y²)/2]-√﹙xy﹚≥(x+y)/2-2/(1/x+1/y)
﹛√[(x²+y²)/2]﹜²-[√﹙xy﹚]²/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥(x+y)/2-2xy/(x+y)
[﹙x-y)²/2]/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥﹙x-y)²/[2﹙x+y﹚]
√[(x²+y²)/2]+√﹙xy﹚≤x+y(当x≠y时﹚
(x²+y²)/2+xy+2√[(x²+y²)/2]√﹙xy﹚≤x²+y²+2xy
x²+y²+2xy+4√[(x²+y²)/2]√﹙xy﹚≤2x²+2y²+4xy
2√(x²+y²)√﹙2xy﹚≤x²+y²+2xy
此式显然成立,且以上步步可逆
∴√(x²+y²)+2/(1/x+1/y)>√[(x²+y²)/2]+2/(1/x+1/y)≥(x+y)/2+√﹙xy﹚(当x≠y时﹚
当x=y时,√(x²+y²)+2/(1/x+1/y)=√2x+x,
(x+y)/2+√﹙xy﹚=x+x
∴√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
故√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
√[(x²+y²)/2]-√﹙xy﹚≥(x+y)/2-2/(1/x+1/y)
﹛√[(x²+y²)/2]﹜²-[√﹙xy﹚]²/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥(x+y)/2-2xy/(x+y)
[﹙x-y)²/2]/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥﹙x-y)²/[2﹙x+y﹚]
√[(x²+y²)/2]+√﹙xy﹚≤x+y(当x≠y时﹚
(x²+y²)/2+xy+2√[(x²+y²)/2]√﹙xy﹚≤x²+y²+2xy
x²+y²+2xy+4√[(x²+y²)/2]√﹙xy﹚≤2x²+2y²+4xy
2√(x²+y²)√﹙2xy﹚≤x²+y²+2xy
此式显然成立,且以上步步可逆
∴√(x²+y²)+2/(1/x+1/y)>√[(x²+y²)/2]+2/(1/x+1/y)≥(x+y)/2+√﹙xy﹚(当x≠y时﹚
当x=y时,√(x²+y²)+2/(1/x+1/y)=√2x+x,
(x+y)/2+√﹙xy﹚=x+x
∴√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
故√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
(x+y)/(根号下x+根号下y)+2xy/(x根号下y+y根号下x)=______.
已知正实数x y满足x-根号xy-2y=0求 x+3根号xy+2y/2x-2根号下xy-y
(x*根号下x + x*根号下y ) / (xy-y^2) — (x + 根号下xy + y) /(x*根号下x — y
[x-y]根号下 1/y-x +根号下 x的平方-2xy+y的平方 化简
x,y,z属于R+,求证根号下(x^2+y^2-xy)+根号下(y^2+z^2-yz)大于根号下(x^2+y^2-xz)
已知X+Y=—3,XY=2求根号下x/y+根号下y/x的值
已知x>y>0,xy=1,求证(x^2+y^2)/(x-y)≥2根号2
已知x、y满足根号下4x-5y+根号下x-y-1=0,则根号下xy-根号下x/y
已知y=根号1-x+根号x-1+3,求根号x+根号y分之x+2根号xy+y+根号x-根号y分之一的值
【(x-y)^3(x^1/2+y^1/2)^-3+3(x根号y-y根号x)】/(x根号x+y根号y)+(2xy根号xy-
x根号x+x根号y/xy-y^2)-(x+根号xy+y/x根号x-y根号)y
已知x平方+y平方-2y+1=0,求(根号x+根号y+3)/((根号xy+y)(3根号x+根号y))