请教二元函数可微,但一阶偏导不连续的例子
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:46:39
请教二元函数可微,但一阶偏导不连续的例子
假设f(x,y)在(x.,y.)可微,但f(x,y)的两个一阶偏导数在(x.,y.)却不一定连续.
哪位达人能举一个例子,或说明这种情况发生时的几何解释?
很好的例子.通过分析例子我也得到一些启示:
可微表示该点附近曲面是平滑的,而平滑就表示这一点附近偏导(或方向导数)是渐变的,即连续的.
但我们又想让该点的偏导不连续,在不考虑无穷导数时,只能是例子中振荡的情况.振荡是一种极限情况,它是间断的,但我们也可以认为它连续.这就像是无穷大没有意义,但我们也可以认为它是有意义的"数".当函数具有这种"连续"的极限情况--振荡型的偏导时,我们就得到了可微但偏导不连续的曲面.
假设f(x,y)在(x.,y.)可微,但f(x,y)的两个一阶偏导数在(x.,y.)却不一定连续.
哪位达人能举一个例子,或说明这种情况发生时的几何解释?
很好的例子.通过分析例子我也得到一些启示:
可微表示该点附近曲面是平滑的,而平滑就表示这一点附近偏导(或方向导数)是渐变的,即连续的.
但我们又想让该点的偏导不连续,在不考虑无穷导数时,只能是例子中振荡的情况.振荡是一种极限情况,它是间断的,但我们也可以认为它连续.这就像是无穷大没有意义,但我们也可以认为它是有意义的"数".当函数具有这种"连续"的极限情况--振荡型的偏导时,我们就得到了可微但偏导不连续的曲面.
f(x,y)=x^2*sin(1/x)+y^2*sin(1/y)
(如果x->0,第一项会变为0,如果y->0,第二项会变为0,因此当遇到x,y等于0时,取极限即可,下同)
求(0,0)处的微分
f(Δx,Δy)-f(0,0)
=Δx^2*sin(1/Δx)+Δy^2*sin(1/Δy)
=Δx*sin(1/Δx)*dx+Δy*sin(1/Δy)*dy
(Δx,Δy)->(0,0)取极限知df|(0,0)=0,所以f(x,y)在(0,0)可微.
而f的偏导数,分别记为fx,fy
fx(x,y)=2x*sin(1/x)-cos(1/x) (x不等于0时)
上式在x->0时没有极限
但fx(0,0)=0...(这是由df|(0,0)=0求得)
因此fx(x,y)在(0,0)处是不连续的,同理fy(x,y)在(0,0)处也是不连续的.
(如果x->0,第一项会变为0,如果y->0,第二项会变为0,因此当遇到x,y等于0时,取极限即可,下同)
求(0,0)处的微分
f(Δx,Δy)-f(0,0)
=Δx^2*sin(1/Δx)+Δy^2*sin(1/Δy)
=Δx*sin(1/Δx)*dx+Δy*sin(1/Δy)*dy
(Δx,Δy)->(0,0)取极限知df|(0,0)=0,所以f(x,y)在(0,0)可微.
而f的偏导数,分别记为fx,fy
fx(x,y)=2x*sin(1/x)-cos(1/x) (x不等于0时)
上式在x->0时没有极限
但fx(0,0)=0...(这是由df|(0,0)=0求得)
因此fx(x,y)在(0,0)处是不连续的,同理fy(x,y)在(0,0)处也是不连续的.
如果一个二元函数的在一点的两个一阶偏导都连续,则此函数在这一点可微,
二元函数的可微性已知原函数连续 但其不一定可微 那么二元函数可微能否推导出该函数连续呢?pfahy 我说的是二元函数的
二元函数连续和可微的关系
请教二元函数可微必连续的证明过程
谁能举个不是分段函数的例子说明原函数可导但它的导数不一定连续.
二元函数可导与连续的关系
处处可导的函数的一阶导数连续吗?为什么?
一道关于二元分段函数在分断点的连续,偏导数,可微的题.
二元函数 连续 偏导 可微的关系如何从几何上进行理解
叙述对二元函数而言,可微、偏导、连续之间的关系.
二元函数全微分的问题设[f(x)-e^x]sinydx-f(x)cosydy是一个二元函数的全微分,f(x)具有一阶连续
二元函数微分问题,书上说可微的必要条件是在该点连续同时两个偏导数都存在,可微的充分条件是两个偏导数存在且连续,但看到辅导