已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:40:55
已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:∠AME=∠CMB.
证明:
证法一:过A作CB的平行线交CE的延长线于点N.
∵∠ACB=90°
∴∠1+∠NCB=90°
∵CF⊥MB
∴∠2+∠NCB=90°
∴∠1=∠2
∵AN∥BC且∠ACB=90°
∴∠NAC=90°
在△NAC和△MCB中
∠1=∠2
AC=CB
∠NAC=∠ACB
∴△NAC≌△MCB(A.S.A)
∴∠N=∠CMB
∵AN=MC
∵M是AB中点∴AM=MC=AN
∵∠ACB=90°AC=BC
∴∠3=∠ABC=45°
∵AN∥BC∴∠4=∠ABC
∴∠3=∠4
在△AME和△ANE中
AM=AN
∠3=∠4
AE=AE,
∴△AME≌△ANE(S.A.S)
∴∠AME=∠N,
∵∠N=∠CMB
∴∠AME=∠CMB;
证法二:作∠ACB的平分线交BM于点N.
∵AC=BC∠ACB=90°
∴∠ABC=∠A=45°
∠MCE+∠BCE=90°
∴∠MCE=∠MBC<∠ABC=45°
∴N点在线段BF上.
∵CN是∠ACB的平分线
∴∠ACN=∠BCN=45°
在△AEC和△CNB中
∠A=∠BCN
AC=CB
∠ACE=∠MBC
∴△AEC≌△CNB
∴CN=AE
∵M是AB中点
∴AM=MC
在△AME和△CMN中
∠A=∠MCN
CN=AE
AM=MC
∴△AME≌△CMN,
∴∠AME=∠CMB.
证法一:过A作CB的平行线交CE的延长线于点N.
∵∠ACB=90°
∴∠1+∠NCB=90°
∵CF⊥MB
∴∠2+∠NCB=90°
∴∠1=∠2
∵AN∥BC且∠ACB=90°
∴∠NAC=90°
在△NAC和△MCB中
∠1=∠2
AC=CB
∠NAC=∠ACB
∴△NAC≌△MCB(A.S.A)
∴∠N=∠CMB
∵AN=MC
∵M是AB中点∴AM=MC=AN
∵∠ACB=90°AC=BC
∴∠3=∠ABC=45°
∵AN∥BC∴∠4=∠ABC
∴∠3=∠4
在△AME和△ANE中
AM=AN
∠3=∠4
AE=AE,
∴△AME≌△ANE(S.A.S)
∴∠AME=∠N,
∵∠N=∠CMB
∴∠AME=∠CMB;
证法二:作∠ACB的平分线交BM于点N.
∵AC=BC∠ACB=90°
∴∠ABC=∠A=45°
∠MCE+∠BCE=90°
∴∠MCE=∠MBC<∠ABC=45°
∴N点在线段BF上.
∵CN是∠ACB的平分线
∴∠ACN=∠BCN=45°
在△AEC和△CNB中
∠A=∠BCN
AC=CB
∠ACE=∠MBC
∴△AEC≌△CNB
∴CN=AE
∵M是AB中点
∴AM=MC
在△AME和△CMN中
∠A=∠MCN
CN=AE
AM=MC
∴△AME≌△CMN,
∴∠AME=∠CMB.
已知,在Rt三角形ABC中,角C=90度,AC=BC,M是AC中点,连接BM,CF垂直于MB,F是垂足,延CF交AB于点
△ABC在中∠A=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF//AB交AD延长线与点F
已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证
如图,已知,在△ABC中,∠A=60°,AB=AC,BE⊥AC于E,CF⊥AB于F,点D为BC的中点,BE,CF交于点M
如图,在△ABC中,∠ACB=90°,AC=AB,E是BC上的一点,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长
已知如图在三角形abc中角bac等于90度,ab=ac,m是ac边的中点,ad垂直于bm交bc于d,交bm于e,cf垂直
已知在△ABC中,D是AB的中点,F在BC延长线上,联结DF交AC于E,求证CF:BF=CE:AE
如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接
如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接
已知,在三角形ABC中,D是AB的中点,F是BC延长线上的点,连接DF交AC于E,求证,CF比BF=CE比AE
.锐角三角形ABC中角A的角平分线交BC于D.AD上有一点M连接BM,CM并延长交AC,AB于E,F.已知BE=CF,求
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点连接EF