A,B为n阶矩阵,A^3=B^3,A*A*B=B*B*A,且A^2+B^2可逆 ,证A=B
设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆
设A,B为n阶方阵,且2A-B-AB=E,A^2=A,证明:A-B可逆,并求其逆矩阵
线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵
设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0.
设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1
A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=
设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆
设A,B均为n阶可逆矩阵,求证:(AB)^*=B*A*
A、B为矩阵,A×B=B×A
已知A,B为3阶矩阵,A可你且满足A^2-AB=3I.求,证明:A-B可逆
线性代数 A,B为可逆矩阵,求证A^(-1)B+B^(-1)A=E