设函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称,f(1)=2,f(2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:39:19
设函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称,f(1)=2,f(2)<3,求a,b,c
∵函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称
∴f(x)是奇函数 ∴f(﹣x)=﹣f(x) ∴(ax²+1)/(﹣bx+c)=﹣(ax²+1)/(bx+c) ∴c=0
∴f(x=(ax²+1)/(bx)
∵f(1)=2 ∴(a+1)/b=2 ∴a+1=2b ∴a=2b-1
∵f(2)<3 ∴(4a+1)/(2b)=(8b-3)/(2b)=4-3/(2b)<3 ∴1/b>2/3 ∴0<b<3/2
∵a,b,c∈Z ∴b=1 ∴a=2b-1=1
∴a=1 b=1 c=0
∴f(x)是奇函数 ∴f(﹣x)=﹣f(x) ∴(ax²+1)/(﹣bx+c)=﹣(ax²+1)/(bx+c) ∴c=0
∴f(x=(ax²+1)/(bx)
∵f(1)=2 ∴(a+1)/b=2 ∴a+1=2b ∴a=2b-1
∵f(2)<3 ∴(4a+1)/(2b)=(8b-3)/(2b)=4-3/(2b)<3 ∴1/b>2/3 ∴0<b<3/2
∵a,b,c∈Z ∴b=1 ∴a=2b-1=1
∴a=1 b=1 c=0
设函数f(x)=ax^3+bx^2+cx+b(a,b,c,d∈R)的图像关于原点对称且x=1时f(x)去最小值-2
设函数f(x)=ax^3+bx^2+cx+d,(a,b,c,d∈R)的图像关于原点对称,且当x=1时f(x)有极小值-2
设函数f(x)=ax^2+1/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)
y=f(x)=ax2+bx+c的图像与y=3x2-bx-2关于原点对称,(1)求a、b、c
函数f(x)=1/3x^3+ax^2+bx+c且函数g(x)=f(x)-2/3的图象关于原点对称
设函数f(x)=ax^2+bx+c(a,b,c∈R)若x=-1为函数f(x)e^x的一个极值点,则下列图像不可能为y=f
设函数f(x)=ax^2+bx+c(a,b,c∈R)若x=-1为函数f(x)e^x的一个极值点,则下列图像不可能为y=f
设函数f(x)=ax^2+bx+c,其中a∈N*,b∈N,c∈Z
二次函数f(x)=ax²+bx+c (a<0)的图像关于直线x=-2对称 则函数y=f(-x)的
已知:函数f(x)ax方+bx+c的图像关于x=1对称,且点(1,-4),(2,-3)都在这个函数图像上求a,b,c的值
已知函数f(x)=ax²+c/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
已知函数f(x)=ax立方+bx平方+cx+d(a.b.c.d属于R)的图像关于原点对称,且当x=-1时,f(x)有极值